
Fast Distributed Coloring Algorithms
for Triangle-Free Graphs!

Seth Pettie and Hsin-Hao Su

University of Michigan

Abstract. Vertex coloring is a central concept in graph theory and
an important symmetry-breaking primitive in distributed computing.
Whereas degree-∆ graphs may require palettes of∆+1 colors in the worst
case, it is well known that the chromatic number of many natural graph
classes can be much smaller. In this paper we give new distributed algo-
rithms to find (∆/k)-coloring in graphs of girth 4 (triangle-free graphs),
girth 5, and trees, where k is at most (14 − o(1)) ln∆ in triangle-free
graphs and at most (1− o(1)) ln∆ in girth-5 graphs and trees, and o(1)
is a function of ∆. Specifically, for ∆ sufficiently large we can find such
a coloring in O(k + log∗ n) time. Moreover, for any ∆ we can compute
such colorings in roughly logarithmic time for triangle-free and girth-
5 graphs, and in O(log∆ + log∆ log n) time on trees. As a byproduct,
our algorithm shows that the chromatic number of triangle-free graphs
is at most (4 + o(1)) ∆

ln∆ , which improves on Jamall’s recent bound of
(67 + o(1)) ∆

ln∆ . Also, we show that (∆ + 1)-coloring for triangle-free
graphs can be obtained in sublogarithmic time for any ∆.

1 Introduction

A proper t-coloring of a graph G = (V,E) is an assignment from V to {1, . . . , t}
(colors) such that no edge is monochromatic, or equivalently, each color class
is an independent set. The chromatic number χ(G) is the minimum number of
colors needed to properly color G. Let ∆ be the maximum degree of the graph.
It is easy to see that sometimes ∆+1 colors are necessary, e.g., on an odd cycle
or a (∆+1)-clique. Brooks’ celebrated theorem [9] states that these are the only
such examples and that every other graph can be ∆-colored. Vizing [31] asked
whether Brooks’ Theorem can be improved for triangle-free graphs. In the 1970s
Borodin and Kostochka [8], Catlin [10], and Lawrence [21] independently proved
that χ(G) ≤ 3

4 (∆ + 2) for triangle-free G, and Kostochka (see [17]) improved
this bound to χ(G) ≤ 2

3 (∆+ 2).

Existential Bounds. Better asymptotic bounds were achieved in the 1990s by
using an iterated approach, often called the “Rödl Nibble”. The idea is to color
a very small fraction of the graph in a sequence of rounds, where after each

" This work is supported by NSF CAREER grant no. CCF-0746673, NSF grant no.
CCF-1217338, and a grant from the US-Israel Binational Science Foundation.

F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 687–699, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

688 S. Pettie and H.-H. Su

round some property is guaranteed to hold with some small non-zero probability.
Kim [18] proved that in any girth-5 graph G, χ(G) ≤ (1+ o(1)) ∆

ln∆ . This bound
is optimal to within a factor-2 under any lower bound on girth. (Constructions
of Kostochka and Masurova [19] and Bollobás [7] show that there is a graph G of
arbitrarily large girth and χ(G) > ∆

2 ln∆ .) Building on [18], Johansson (see [23])
proved that χ(G) = O(∆

ln∆) for any triangle-free (girth-4) graph G.1 In relatively
recent work Jamall [14] proved that the chromatic number of triangle-free graphs
is at most (67 + o(1)) ∆

ln∆ .

Algorithms. We assume the LOCAL model [26] of distributed computation.2

Grable and Panconesi [12] gave a distributed algorithm that ∆/k-colors a girth-

5 graph in O(log n) time, where ∆ > log1+ε′ n and k ≤ ε ln∆ for any ε′ > 0
and some ε < 1 depending on ε′.3 Jamall [15] showed a sequential algorithm for
O(∆/ ln∆)-coloring a triangle-free graph in O(n∆2 ln∆) time, for any ε′ > 0

and ∆ > log1+ε′ n.
Note that there are two gaps between the existential [14,18,23] and algorithmic

results [12, 15]. The algorithmic results use a constant factor more colors than
necessary (compared to the existential bounds) and they only work when ∆ ≥
log1+Ω(1) n is sufficiently large, whereas the existential bounds hold for all ∆.

New Results. We give new distributed algorithms for (∆/k)-coloring triangle-
free graphs that simultaneously improve on both the existential and algorithmic
results of [12, 14, 15, 23]. Our algorithms run in log1+o(1) n time for all ∆ and in
O(k+log∗ n) time for∆ sufficiently large. Moreover, we prove that the chromatic
number of triangle-free graphs is (4 + o(1)) ∆

ln∆ .

Theorem 1. Fix a constant ε′ > 0. Let ∆ be the maximum degree of a triangle-
free graph G, assumed to be at least some ∆ε′ depending on ε′. Let k ≥ 1 be
a parameter such that 2ε′ ≤ 1 − 4k

ln∆ . Then G can be (∆/k)-colored, in time

O(k + log∗ ∆) if ∆1− 4k
ln∆−ε′ = Ω(lnn), and, for any ∆, in time on the order of

min
(
eO(

√
ln lnn),∆+ log∗ n

)
· (k + log∗ ∆) · logn

∆1− 4k
ln∆−ε′

= log1+o(1) n

The first time bound comes from an O(k+log∗ ∆)-round procedure, each round
of which succeeds with probability 1− 1/ poly(n). However, as ∆ decreases the
probability of failure tends to 1. To enforce that each step succeeds with high

1 We are not aware of any extant copy of Johansson’s manuscript. It is often cited as
a DIMACS Technical Report, though no such report exists. Molloy and Reed [23]
reproduced a variant of Johansson’s proof showing that χ(G) ≤ 160 ∆

ln∆ for triangle-
free G.

2 In short, vertices host processors which operate is synchronized rounds; vertices can
communicate one arbitrarily large message across each edge in each round; local
computation is free; time is measured by the number of rounds.

3 They claimed that their algorithm could also be extended to triangle-free graphs.
Jamall [15] pointed out a flaw in their argument.

Fast Distributed Coloring Algorithms for Triangle-Free Graphs 689

probability we use a version of the Local Lemma algorithm of Moser and Tar-
dos [24] optimized for the parameters of our problem.4

By choosing k = ln∆/(4+ ε) and ε′ = ε/(2(4+ ε)), we obtain new bounds on
the chromatic number of triangle-free graphs.

Corollary 1. For any ε > 0 and ∆ sufficiently large (as a function of ε), χ(G) ≤
(4 + ε) ∆

ln∆ . Consequently, the chromatic number of triangle-free graphs is (4 +
o(1)) ∆

ln∆ , where the o(1) is a function of ∆.

Our result also extends to girth-5 graphs with∆1− 4k
ln∆−ε′ replaced by ∆1− k

ln∆−ε′ ,
which allows us to (1 + ε)∆/ ln∆-color such graphs. Our algorithm can clearly
be applied to trees (girth ∞). Elkin [11] noted that with Bollobás’s construc-
tion [7], Linial’s lower bound [22] on coloring trees can be strengthened to show
that it is impossible to o(∆/ ln∆)-color a tree in o(log∆ n) time. We prove that
it is possible to (1 + o(1))∆/ ln∆-color a tree in O(log∆ + log∆ logn) time.
Also, we show that (∆ + 1)-coloring for triangle-free graphs can be obtained in
exp(O(

√
log logn)) time.

Technical Overview. In the iterated approaches of [12, 14, 18, 23] each vertex u
maintains a palette, which consists of the colors that have not been selected by
its neighbors. To obtain a t-coloring, each palette consists of colors {1, . . . , t}
initially. In each round, each u tries to assign itself a color (or colors) from
its palette, using randomization to resolve the conflicts between itself and the
neighbors. The c-degree of u is defined to be the number of its neighbors whose
palettes contain c. In Kim’s algorithm [18] for girth-5 graphs, the properties
maintained for each round are that the c-degrees are upper bounded and the
palette sizes are lower bounded. In girth-5 graphs the neighborhoods of the
neighbors of u only intersect at u and therefore have a negligible influence on each
other, that is, whether c remains in one neighbor’s palette has little influence
on a different neighbor of u. Due to this independence one can bound the c-
degree after an iteration using standard concentration inequalities. In triangle-
free graphs, however, there is no guarantee of independence. If two neighbors
of u have identical neighborhoods, then after one iteration they will either both
keep or both lose c from their palettes. In other words, the c-degree of u is
a random variable that may not have any significant concentration around its
mean. Rather than bound c-degrees, Johansson [23] bounded the entropy of the
remaining palettes so that each color is picked nearly uniformly in each round.
Jamall [14] claimed that although each c-degree does not concentrate, the average
c-degree (over each c in the palette) does concentrate. Moreover, it suffices to
consider only those colors within a constant factor of the average in subsequent
iterations.

Our (∆/k)-coloring algorithm performs the same coloring procedure in each
round, though the behavior of the algorithm has two qualitatively distinct phases.

4 Note that for many reasonable parameters (e.g., k = O(1),∆ = log1−δ n), the run-
ning time is sublogarithmic.

690 S. Pettie and H.-H. Su

In the first O(k) rounds the c-degrees, palette sizes, and probability of remain-
ing uncolored are very well behaved. Once the available palette is close to the
number of uncolored neighbors the probability of remaining uncolored begins
to decrease drastically in each successive round, and after O(log∗ n) rounds all
vertices are colored, w.h.p.

Our analysis is similar to that of Jamall [14] in that we focus on bounding the
average of the c-degrees. However, our proof needs to take a different approach,
for two reasons. First, to obtain an efficient distributed algorithm we need to
obtain a tighter bound on the probability of failure in the last O(log∗ n) rounds,
where the c-degrees shrink faster than a constant factor per round. Second, there
is a small flaw in Jamall’s application of Azuma’s inequality in Lemma 12 in [14],
the corresponding Lemma 17 in [15], and the corresponding lemmas in [16]. It
is probably possible to correct the flaw, though we manage to circumvent this
difficulty altogether. See the full version for a discussion of this issue.

The second phase presents different challenges. The natural way to bound
c-degrees using Chernoff-type inequalities gives error probabilities that are ex-
ponential in the c-degree, which is fine if it is Ω(log n) but becomes too large
as the c-degrees are reduced in each coloring round. At a certain threshold we
switch to a different analysis (along the lines of Schneider and Wattenhofer [30])
that allows us to bound c-degrees with high probability in the palette size, which,
again, is fine if it is Ω(log n).

In both phases, if we cannot obtain small error probabilities (via concentration
inequalities and a union bound) we revert to a distributed implementation of
the Moser-Tardos Lovász Local Lemma algorithm [24]. We show that for certain
parameters the symmetric LLL can be made to run in sublogarithmic time.
For the extensions to trees and the (∆ + 1)-coloring algorithm for triangle-free
graphs, we adopt the ideas from [5,6,29] to reduce the graph into several smaller
components and color each of them separately by deterministic algorithms [4,25],
which will run faster as the size of each subproblem is smaller.

Organization. Section 2 presents the general framework for the analysis. Sec-
tion 3 describes the algorithms and discusses what parameters to plug into the
framework. Section 4 describes the extension to graphs of girth 5, trees, and the
(∆+ 1)-coloring algorithm for triangle-free graphs.

2 The Framework

Every vertex maintains a palette that consists of all colors not previously chosen
by its neighbors. The coloring is performed in rounds, where each vertex chooses
zero or more colors in each round. Let Gi be the graph induced by the uncolored
vertices after round i, so G = G0. Let Ni(u) be u’s neighbors in Gi and let Pi(u)
be its palette after round i. The c-neighbors Ni,c(u) consist of those v ∈ Ni(u)
with c ∈ Pi(v). Call |Ni(u)| the degree of u and |Ni,c(u)| the c-degree of u after
round i. This notation is extended to sets of vertices in a natural way, e.g.,
Ni(Ni(u)) is the set of neighbors of neighbors of u in Gi.

Fast Distributed Coloring Algorithms for Triangle-Free Graphs 691

Algorithm 2 describes the iterative coloring procedure. In each round, each
vertex u selects a set Si(u) of colors by including each c ∈ Pi−1(u) independently
with probability πi to be determined later. If some c ∈ Si(u) is not selected by
any neighbor of u then u can safely color itself c. In order to remove dependen-
cies between various random variables we exclude colors from u’s palette more
aggressively than is necessary. First, we exclude any color selected by a neighbor,
that is, Si(Ni−1(u)) does not appear in Pi(u). The probability that a color c is not
selected by a neighbor is (1−πi)|Ni−1,c(u)|. Suppose that this quantity is at least
some threshold βi for all c. We force c to be kept with probability precisely βi by
putting c in a keep-set Ki(u) with probability βi/(1− πi)|Ni−1,c(u)|. The proba-
bility that c ∈ Ki(u)\Si(Ni−1(u)) is therefore βi, assuming βi/(1− πi)|Ni−1,c(u)|

is a valid probability; if it is not then c is ignored. Let P̂i(u) be what remains of
u’s palette. Algorithm 2 has two variants. In Variant B, Pi(u) is exactly P̂i(u)
whereas in Variant A Pi(u) is the subset of P̂i(u) whose c-degrees are sufficiently
low, less than 2ti, where ti is a parameter that will be explained below.

Include each c ∈ Pi−1(u) in Si(u) independently with probability πi.
For each c, calculate rc = βi/(1− πi)

|Ni−1,c(u)|.
If rc ≤ 1, include c ∈ Pi−1(u) in Ki(u) independently with probability rc.
return (Si(u),Ki(u)).

Algorithm 1. Select(u,πi,βi)

repeat
Round i = 1, 2, 3,
for each u ∈ Gi−1 do

(Si(u),Ki(u))← Select(u, πi,βi)

Set P̂i(u)← Ki(u) \ Si(Ni−1(u))

if Si(u) ∩ P̂i(u) &= ∅ then color u with any color in Si(u) ∩ P̂i(u) end if
(Variant A) Pi(u)← {c ∈ P̂i(u) | |Ni,c(u)| ≤ 2ti}
(Variant B) Pi(u)← P̂i(u)

end for
Gi ← Gi−1 \ {colored vertices}

until the termination condition occurs

Algorithm 2. Coloring-Algorithm(G0, {πi}, {βi})

The algorithm is parameterized by the sampling probabilities {πi}, the ideal
c-degrees {ti} and the ideal probability {βi} of retaining a color. The {βi} define
how the ideal palette sizes {pi} degrade. Of course, the actual palette sizes and
c-degrees after i rounds will drift from their ideal values, so we will need to reason
about approximations of these quantities. We will specify the initial parameters
and the terminating conditions when applying both variants in Section 3.

692 S. Pettie and H.-H. Su

2.1 Analysis A

Given {πi}, p0, t0, and δ, the parameters for Variant A are derived below.

βi = (1− πi)
2ti−1 αi = (1− πi)

(1−(1+δ)i−1/2)p′
i

pi = βipi−1 ti = max(αiβiti−1, T) (1)

p′i = (1− δ/8)ipi t′i = (1 + δ)iti

Let us take a brief tour of the parameters. The sampling probability πi will be
inversely proportional to ti−1, the ideal c-degree at end of round i − 1. (The
exact expression for πi depends on ε′.) Since we filter out colors with more
than twice the ideal c-degree, the probability that a color is not selected by
any neighbor is at least (1 − πi)2ti−1 = βi. Note that since πi = Θ(1/ti−1) we
have βi = Θ(1). Thus, we can force all colors to be retained in the palette with
probability precisely βi, making the ideal palette size pi = βipi−1. Remember
that a c-neighbor stays a c-neighbor if it remains uncolored and it does not
remove c from its palette. The latter event happens with probability βi. We use
αi as an upper bound on the probability that a vertex remains uncolored, so the
ideal c-degree should be ti = αiβiti−1. To account for deviations from the ideal
we let p′i and t′i be approximate versions of pi and ti, defined in terms of a small
error control parameter δ > 0. Furthermore, certain high probability bounds will
fail to hold if ti becomes too small, so we will not let it go below a threshold T .

When the graph has girth 5, the concentration bounds allow us to show that
|Pi(u)| ≥ p′i and |Ni,c(u)| ≤ t′i with certain probabilities. As pointed out by
Jamall [14,15], |Ni,c(u)| does not concentrate in triangle-free graphs. He showed
that the average c-degree, ni(u) =

∑
c∈Pi(u)

|Ni,c(u)|/|Pi(u)|, concentrates and
will be bounded above by t′i with a certain probability. Since ni(u) concentrates,
it is possible to bound the fraction of colors filtered for having c-degrees larger
than 2ti.

Let λi(u) = min(1, |Pi(u)|/p′i). Since Pi(u) is supposed to be at least p′i, if
we do not filter out colors, 1 − λi(u) can be viewed as the fraction that has
been filtered. In the following we state an induction hypotheses equivalent to
Jamall’s [14].

Di(u) ≤ t′i, where Di(u) = λi(u)ni(u) + (1 − λi(u))2ti

Di(u) can be interpreted as the average of the c-degrees of Pi(u) with p′i− |Pi(u)|
dummy colors whose c-degrees are exactly 2ti. Notice thatDi(u) ≤ t′i also implies
1− λi(u) ≤ (1 + δ)i/2, because (1− λi(u))2ti ≤ Di(u) ≤ t′i. Therefore:

|Pi(u)| ≥ (1− (1 + δ)i/2)p′i

Recall Pi(u) is the palette consisting of colors c for which |Ni,c(u)| ≤ 2ti.
The main theorem for this section shows the inductive hypothesis holds with

a certain probability. See the full version for the proof.

Theorem 2. Suppose that Di−1(x) ≤ t′i−1 for all x ∈ Gi−1, then for a given u ∈
Gi−1, Di(u) ≤ t′i holds with probability at least 1−∆e−Ω(δ2T)−(∆2+2)e−Ω(δ2p′

i).

Fast Distributed Coloring Algorithms for Triangle-Free Graphs 693

2.2 Analysis B

Analysis A has a limitation for smaller c-degrees, since the probability guarantee
becomes smaller as ti goes down. Therefore, Analysis A only works well for
ti ≥ T , where T is a threshold for certain probability guarantees. For example,
if we want Theorem 2 to hold with high probability in n, then we must have
T ' logn.

To get a good probability guarantee below T , we will use an idea by Schneider
andWattenhofer [30]. They took advantage of the trials done for each color inside
the palette, rather than just considering the trials on whether each neighbor is
colored or not. We demonstrate this idea in the proof of Theorem 3 in the full
version. The probability guarantee in the analysis will not depend on the current
c-degree but on the initial c-degree and the current palette size.

The parameters for Variant B are chosen based on an initial lower bound on
the palette size p0, upper bound on the c-degree t0, and error control parameter
δ. The selection probability is chosen to be πi = 1/(ti−1+1) and the probability
a color remains in a palette βi = (1 − πi)ti−1 . The ideal palette size and its
relaxation are pi = βipi−1 and p′i = (1 − δ)ipi, and the ideal c-degree ti =
max(αiti−1, 1). One can show the probability of remaining uncolored is upper
bounded by αi = 5t0/p′i,

Let Ei(u) denote the event that |Pi(u)| ≥ p′i and |Ni,c(u)| < ti for all c ∈
Pi(u). Although a vertex could lose its c-neighbor if the c-neighbor becomes
colored or loses c in its palette, in this analysis, we only use the former to
bound its c-degree. Also, if Ei−1(u) is true, then Pr(c /∈ Si(Ni−1(u))) > βi for
all c ∈ Pi−1(u). Thus in Select(u,πi,βi), we will not ignore any colors in the
palette. Each color remains in the palette with probability exactly βi.

The following theorem shows the inductive hypothesis holds with a certain
probability. See the full version for the proof.

Theorem 3. If Ei−1(x) holds for all x ∈ Gi−1, then for a given u ∈ Gi−1,

Ei(u) holds with probability at least 1−∆e−Ω(t0) − (∆2 + 1)e−Ω(δ2p′
i)

3 The Coloring Algorithms

The algorithm in Theorem 1 consists of two phases. Phase I uses Analysis A
and Phase II uses Analysis B. First, we will give the parameters for both phases.
Then, we will present the distributed algorithm that makes the induction hy-
pothesis in Theorem 2 (Di(u) ≤ t′i) and Theorem 3 (Ei(u)) hold for all u ∈ Gi

with high probability in n for every round i.
Let ε1 = 1− 4k

ln∆ − 2ε′

3 and ε2 = 1− 4k
ln∆ − ε′

3 . We will show that upon reaching
the terminating condition of Phase I (which will be defined later), we will have
|Pi(u)| ≥ ∆ε2 for all u ∈ Gi and |Ni,c(u)| < ∆ε1 for all u ∈ Gi and all c ∈ Pi(u).
At this point, for a non-constructive version, we can simply apply the results
about list coloring constants [13, 27, 28] to get a proper coloring, since at this
point there is an ω(1) gap between |Ni,c(u)| and |Pi(u)| for every u ∈ Gi. One can
turn the result of [27] into a distributed algorithm with the aid of Moser-Tardos

694 S. Pettie and H.-H. Su

Lovász Local Lemma algorithm to amplify the success probability. However, to
obtain an efficient distributed algorithm we use Analysis B in Phase II.

Since our result holds for large enough ∆, we can assume whenever necessary
that ∆ is sufficiently large. The asymptotic notation will be with respect to ∆.

3.1 Parameters for Phase I

In this phase, we use Analysis A with the following parameters and terminating
condition: πi =

1
2Kti−1+1 , where K = 4/ε′ is a constant, p0 = ∆/k, t0 = ∆ and

δ = 1/ log2 ∆. This phase ends after the round when ti ≤ T
def
= ∆ε1/3.

First, we consider the algorithm for at most the first O(log∆) rounds. For

these rounds, we can assume the error (1 + δ)i ≤
(
1 + 1

log2 ∆

)O(log∆)
≤

eO(1/ log∆) = 1 + o(1) and similarly (1 − δ/8)i ≥
(
1− 1

log2 ∆+1

)O(log∆)
≥

e−O(1/ log∆) = 1 − o(1). We will show the algorithm reaches the terminating
condition during these rounds, where the error is under control.

The probability a color is retained, βi = (1 − πi)2ti−1 ≥ e−1/K , is bounded
below by a constant. The probability a vertex remains uncolored is at most
αi = (1 − πi)(1−(1+δ)i−1/2)p′

i ≤ e−(1−o(1))Cpi−1/ti−1 , where C = 1/(4Ke1/K).
Let si = ti/pi be the ratio between the ideal c-degree and the ideal palette size.

Initially, s0 = k and si = αisi−1 ≤ si−1e−(1−o(1))(C/si−1). Initially, si decreases
roughly linearly by C for each round until the ratio si ≈ C is a constant. Then,
si decreases rapidly in the order of iterated exponentiation. Therefore, it takes
roughly O(k + log∗ ∆) rounds to reach the terminating condition where ti ≤ T .
Our goal is to show upon reaching the terminating condition, the palette size
bound pi is greater than T by some amount, in particular, pi ≥ 30e3/ε

′
∆ε2 . See

the full version for the proof of the following Lemma.

Lemma 1. Phase I terminates in (4+ o(1))Ke1/Kk+O(log∗ ∆) rounds, where
K = 4/ε′. Moreover, pi ≥ 30e3/ε

′
∆ε2 for every round i in this phase.

Thus, if the induction hypothesisDi(u) ≤ t′i holds for every u ∈ Gi for every round
i during this phase, we will have |Pi(u)| ≥ (1 − (1 + δ)i/2)p′i ≥ 10e3/ε

′
∆ε2 for all

u ∈ Gi and |Ni,c(u)| ≤ 2ti < ∆ε1 for all u ∈ Gi and all c ∈ Pi(u) in the end.

3.2 Parameters for Phase II

In Phase II, we will use Analysis B with the following parameters and terminating
condition: p0 = 10e3/ε

′
∆ε2 , t0 = ∆ε1 and δ = 1/ log2 ∆. This phase terminates

after 3
ε′ rounds.

First note that the number of rounds 3
ε′ is a constant. We show p′i ≥ 5∆ε2

for each round 1 ≤ i ≤ 3
ε′ , so there is always a sufficient large gap between the

current palette size and the initial c-degree, which implies the shrinking factor
of the c-degrees is αi = 5t0/p′i ≤ ∆−ε′/3. Since pi shrinks by at most a βi ≥ e−1

factor every round, p′i ≥ (1− δ)i
∏i

j=1 βjp0 ≥ ((1 − δ)e−1)i10e3/ε
′
∆ε2 ≥ 5∆ε2 .

Fast Distributed Coloring Algorithms for Triangle-Free Graphs 695

Now since αi ≤ ∆−ε′/3, after 3
ε′ rounds, ti ≤ t0

∏i
j=1 αj ≤ ∆

(
∆−ε′/3

) 3
ε′ ≤ 1.

The c-degree bound, tε′/3, becomes 1. Recall that the induction hypothesis Ei(u)
is the event that |Pi(u)| ≥ p′i and |Ni,c(u)| < ti. If Ei(u) holds for every u ∈ Gi

for every round i during this phase, then in the end, every uncolored vertex has
no c-neighbors, as implied by |Ni,c(u)| < ti ≤ 1. This means these vertices can
be colored with anything in their palettes, which are non-empty.

3.3 The Distributed Coloring Algorithm

We will show a distributed algorithm that makes the induction hypothesis in
Phase I and Phase II hold with high probability in n.

Fix the round i and assume the induction hypothesis holds for all x ∈ Gi−1.
For u ∈ Gi−1, define A(u) to be the bad event that the induction hypoth-
esis fails at u (i.e. Di(u) > t′i in Phase I or Ei(u) fails in Phase II). Let

p = e−∆1− 4k
ln∆−ε′

/(e∆4). By Theorem 2 and Theorem 3, Pr(A(u)) is at most:

∆e−Ω(δ2T) + (∆2 + 2)e−Ω(δ2p′
i) or ∆e−Ω(t0) + (∆2 + 1)e−Ω(δ2p′

i)

Since T = ∆ε1/3, t0 = ∆ε1 , p′i ≥ ∆ε2 , Pr(A(u)) ≤ p for large enough ∆.

If ∆1− 4k
ln∆−ε′ > c logn, then p < 1/nc. By the union bound over all u ∈ Gi−1,

the probability that any of the A(u) fails is at most 1/nc−1. The induction
hypothesis holds for all u ∈ Gi ⊆ Gi−1 with high probability. In this case,
O(k+log∗ ∆) rounds suffice, because each round succeeds with high probability.

On the other hand, if ∆1− 4k
ln∆−ε′ < c logn, then we apply Moser and Tardos’

resampling algorithm to make A(u) simultaneously hold for all u with high
probability. At round i, the bad event A(u) depends on the random variables
which are generated by Select(v,πi,βi) for v within distance 2 inGi−1. Therefore,
the dependency graph G≤4

i−1 consists of edges (u, v) such that distGi−1(u, v) ≤ 4.
Each event A(u) shares variables with at most d < ∆4 other events. The Lovász
Local Lemma [1] implies that if ep(d+1) ≤ 1, then the probability that all A(u)
simultaneously hold is guaranteed to be non-zero. Moser and Tardos showed
how to boost this probability by resampling. In each round of resampling, their
algorithm finds an MIS I in the dependency graph induced by the set of bad
events B and then resamples the random variables that I depends on. In our
case, it corresponds to finding an MIS I in G≤4

i−1[B], where B = {u ∈ Gi−1 |
A(u) fails}. Then, we redo Select(v,πi,βi) for v ∈ G within distance 2 from I to
resample the random variables that I depends on. By plugging in the parameters
for the symmetric case, their proof shows if ep(d+1) ≤ 1−ε, then the probability
any of the bad events occur after t rounds of resampling is at most (1− ε)tn/d.
Thus, O(log n/ log(1

1−ε)) rounds will be sufficient for all A(u) to hold with high

probability in n.5

5 In the statement of Theorem 1.3 in [24], they used 1/ε as an approximation for
log(1

1−ε). However, this difference can be significant in our case, when 1 − ε is very
small.

696 S. Pettie and H.-H. Su

As shown in previous sections, p ≤ e−∆1− 4k
ln∆−ε′

/(e∆4). We can let 1 − ε =

ep(d + 1) ≤ e−∆1− 4k
ln∆−ε′

. Therefore, O(log n/∆1− 4k
ln∆−ε′) resampling rounds

will be sufficient. Also, an MIS can be found in O(∆ + log∗ n) time [3, 20], or
eO(

√
log logn) since ∆ ≤ (c logn)1/(1−

4k
ln∆−ε′) ≤ (c logn)1/ε

′ ≤ logO(1) n [5]. Each

of the O(k+log∗ ∆) rounds is delayed by O(log n/∆1− 4k
ln∆−ε′) resampling rounds,

which are futher delayed by the rounds needed to find an MIS. Therefore, the
total number of rounds is

O

(
(k + log∗ ∆) · logn

∆1− 4k
ln∆−ε′

·min
(
exp

(
O
(√

log logn
))

,∆+ log∗ n
))

Note that this is always at most log1+o(1) n.

4 Extensions

4.1 Graphs of Girth at Least 5

For graphs of girth at least 5, existential results [18, 23] show that there exists
(1 + o(1))∆/ ln∆-coloring. We state a matching algorithmic result. The proof
will be included in the full version.

Theorem 4. Fix a constant ε′ > 0. Let ∆ be the maximum degree of a girth-
5 graph G, assumed to be at least some ∆ε′ depending on ε′. Let k ≥ 1 be
a parameter such that 2ε′ ≤ 1 − k

ln∆ . Then G can be (∆/k)-colored, in time

O(k + log∗ ∆) if ∆1− k
ln∆−ε′ = Ω(lnn), and, for any ∆, in time on the order of

min
(
eO(

√
ln lnn),∆+ log∗ n

)
· (k + log∗ ∆) · logn

∆1− k
ln∆−ε′

= log1+o(1) n

4.2 Trees

Trees are graphs of infinity girth. According to Theorem 4, it is possible to get a
(∆/k)-coloring in O(k + log∗ ∆) time if ∆1− k

ln∆−ε′ = Ω(log n). If ∆1− k
ln∆−ε′ =

O(log n), we will show that using additional O(q) colors, it is possible to get a

(∆/k +O(q))-coloring in O
(
k + log∗ n+ log logn

log q

)
time. By choosing q =

√
∆,

we can find a (1 + o(1))∆/ ln∆-coloring in O(log∆+ log∆ logn) rounds.
The algorithm is the same with the framework, except that at the end of each

round we delete the bad vertices, which are the vertices that fail to satisfy the
induction hypothesis. The remaining vertices must satisfy the induction hypoth-
esis, and then we will continue the next round on these vertices. Using the idea
from [5,6,29], we can show that after O(k+log∗ ∆) rounds of the algorithm, the
size of each component formed by the bad vertices is at most O

(
∆4 logn

)
with

high probability. See the full version for the proof.
Barenboim and Elkin’s deterministic algorithm [4] obtains O(q)-coloring in

O
(

logn
log q + log∗ n

)
time for trees (arboricity = 1). We then apply their algorithm

Fast Distributed Coloring Algorithms for Triangle-Free Graphs 697

on each component formed by bad vertices. Since the size of each component

is at most O(∆4 log n), their algorithm will run in O
(

log logn+log∆
log q + log∗ n

)

time, using the additional O(q) colors. Note that this running time is actually

O
(

log logn
log q + log∗ n

)
, since ∆ = logO(1) n.

4.3 (∆ + 1)-Color Triangle-Free Graphs in Sublogarithmic Time

We show that (∆ + 1)-coloring in triangle-free graphs can be obtained in
exp(O(

√
log logn)) rounds for any ∆. Let k = 1 and ε′ = 1/4. By Theorem

1, there exists a constant ∆0 such that for all ∆ ≥ ∆0, if ∆1/2 ≥ logn, then a
(∆+1)-coloring can be found in O(log∗ ∆) time. If ∆ < ∆0, then (∆+1) can be
solved inO(∆+log∗ n) = O(log∗ n) rounds [3,20]. Otherwise, if∆0 ≤ ∆ < log2 n,
then we can apply the same technique for trees to bound the size of each bad
component by O(∆4 logn) = polylog(n), whose vertices failed to satisfy the
induction hypothesis in the O(log∗ ∆) rounds. Panconesi and Srinivasan’s de-
terministic network decomposition algorithm [25] obtains (∆ + 1)-coloring in
exp(O(

√
logn)) for graphs with n vertices. In fact, their decomposition can also

obtain a proper coloring as long as the graph can be greedily colored (e.g. the
palette size is more than the degree for each vertex). Therefore, by applying their
algorithm, each bad component can be properly colored in exp(O(

√
log logn))

rounds.

5 Conclusion

The time bounds of Theorem 1 show an interesting discontinuity. When ∆ is
large we can cap the error at 1/ poly(n) by using standard concentration in-
equalities and a union bound. When ∆ is small we can use the Moser-Tardos
LLL algorithm to reduce the failure probability again to 1/ poly(n). Thus, the
distributed complexity of our coloring algorithm is tied to the distributed com-
plexity of the constructive Lovász Local Lemma.

We showed that χ(G) ≤ (4+o(1))∆/ ln∆ for triangle-free graphs G. It would
be interesting to see if it is possible to reduce the palette size to (1+o(1))∆/ ln∆,
matching Kim’s [18] bound for girth-5 graphs.

Alon et al. [2] and Vu [32] extended Johansson’s result [23] for triangle-free
graphs to obtain an O(∆/ log f)-coloring for locally sparse graphs (the latter
also works for list coloring), in which no neighborhood of any vertex spans more
than ∆2/f edges. It would be interesting to extend our result to locally sparse
graphs and other sparse graph classes.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Math-
ematics and Optimization. Wiley (2011)

2. Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with sparse neighborhoods.
Journal of Combinatorial Theory, Series B 77(1), 73–82 (1999)

698 S. Pettie and H.-H. Su

3. Barenboim, L., Elkin, M.: Distributed (∆ + 1)-coloring in linear (in ∆) time.
In: STOC 2009, pp. 111–120. ACM, New York (2009)

4. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distrib. Comput. 22, 363–379 (2010)

5. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In: FOCS 2012, pp. 321–330 (October 2012)

6. Beck, J.: An algorithmic approach to the lovász local lemma. Random Structures
& Algorithms 2(4), 343–365 (1991)

7. Bollobás, B.: Chromatic number, girth and maximal degree. Discrete Mathemat-
ics 24(3), 311–314 (1978)

8. Borodin, O.V., Kostochka, A.V.: On an upper bound of a graph’s chromatic num-
ber, depending on the graph’s degree and density. Journal of Combinatorial Theory,
Series B 23(2-3), 247–250 (1977)

9. Brooks, R.L.: On colouring the nodes of a network. Mathematical Proceedings of
the Cambridge Philosophical Society 37(02), 194–197 (1941)

10. Catlin, P.A.: A bound on the chromatic number of a graph. Discrete Math. 22(1),
81–83 (1978)

11. Elkin, M.: Personal communication
12. Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks-Vizing color-

ings. Journal of Algorithms 37(1), 85–120 (2000)
13. Haxell, P.E.: A note on vertex list colouring. Comb. Probab. Comput. 10(4),

345–347 (2001)
14. Jamall, M.S.: A Brooks’ Theorem for Triangle-Free Graphs. ArXiv e-prints (2011)
15. Jamall, M.S.: A Coloring Algorithm for Triangle-Free Graphs. ArXiv e-prints

(2011)
16. Jamall, M.S.: Coloring Triangle-Free Graphs and Network Games. Dissertation.

University of California, San Diego (2011)
17. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley-Interscience series in dis-

crete mathematics and optimization. Wiley (1995)
18. Kim, J.H.: On brooks’ theorem for sparse graphs. Combinatorics. Probability and

Computing 4, 97–132 (1995)
19. Kostochka, A.V., Mazuronva, N.P.: An inequality in the theory of graph coloring.

Metody Diskret. Analiz. 30, 23–29 (1977)
20. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: SPAA

2009, pp. 138–144. ACM, New York (2009)
21. Lawrence, J.: Covering the vertex set of a graph with subgraphs of smaller degree.

Discrete Mathematics 21(1), 61–68 (1978)
22. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1),

193–201 (1992)
23. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Algorithms

and Combinatorics. Springer (2001)
24. Moser, R.A., Tardos, G.: A constructive proof of the general lovász local lemma.

J. ACM 57(2), 11:1–11:15 (2010)
25. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-

sition. Journal of Algorithms 20(2), 356–374 (1996)
26. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Monographs on

Discrete Mathematics and Applications. SIAM (2000)
27. Reed, B.: The list colouring constants. Journal of Graph Theory 31(2), 149–153

(1999)

Fast Distributed Coloring Algorithms for Triangle-Free Graphs 699

28. Reed, B., Sudakov, B.: Asymptotically the list colouring constants are 1. J. Comb.
Theory Ser. B 86(1), 27–37 (2002)

29. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In:
ICS 2011, pp. 223–238 (2011)

30. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry break-
ing. In: PODC 2010, pp. 257–266. ACM, New York (2010)

31. Vizing, V.G.: Some unsolved problems in graph theory. Uspekhi Mat.
Nauk 23(6(144)), 117–134 (1968)

32. Van Vu, H.: A general upper bound on the list chromatic number of locally sparse
graphs. Comb. Probab. Comput. 11(1), 103–111 (2002)

	Fast Distributed Coloring Algorithms for Triangle-Free Graphs
	Introduction
	The Framework
	Analysis A
	Analysis B

	The Coloring Algorithms
	Parameters for Phase I
	Parameters for Phase II
	The Distributed Coloring Algorithm

	Extensions
	Graphs of Girth at Least 5
	Trees
	(+ 1)-Color Triangle-Free Graphs in Sublogarithmic Time

	Conclusion

