
Noname manuscript No.
(will be inserted by the editor)

Succinct Dynamic Cardinal Trees

Diego Arroyuelo · Pooya Davoodi ·
Srinivasa Rao Satti

the date of receipt and acceptance should be inserted later

Abstract Cardinal trees (or tries of degree k) are a fundamental data structure, in
particular for many text-processing algorithms. Each node in a cardinal tree has at
most k children, each labeled with a symbol from the alphabet {1, . . . , k}. In this
paper we introduce succinct representations for dynamic cardinal trees on n nodes,
requiring 2n+ n lg k + o(n lg k) bits of space. These are the first dynamic cardinal
tree representations that support a (fairly) complete set of operations while using
almost optimal space. For k = O(polylog(n)), we show how the navigational and
query operations on the tree can be supported in O(1) time, while supporting in-
sertions and deletions of leaves in O(1) amortized time. For k = ω(polylog(n)) (and
O(n)), we show that the same set of operations can be supported in O(lg k/ lg lg k)
time (amortized in the case of insertions/deletions). We also show how to asso-
ciate b-bit satellite data to the tree nodes using bn + o(n) extra bits. Finally, we
show how the machinery introduced for dynamic cardinal trees can be adapted
to represent dynamic binary trees using 2n + o(n) bits of space, so that the tree

Preliminary versions of this paper appeared in Proceedings of 19th Annual Symposium on
Combinatorial Pattern Matching (CPM 2008), LNCS 5029, pages 277–289, and Proceedings
of 8th Annual Conference on Theory and Applications of Models of Computation (TAMC
2011), LNCS 6648, pages 195–205.

Research partly supported by FONDECYT grant 11121556 (first author).

Research supported by NSF Grant CCF-1018370 and BSF Grant 2010437 (second author).

Research partly supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology,
Grant number 2012-0008241 (third author).

Diego Arroyuelo
Dept. of Informatics, Univ. Técnica Federico Santa Maŕıa & Yahoo! Labs Santiago
E-mail: darroyue@inf.utfsm.cl

Pooya Davoodi
Dept. of Computer Science and Engineering, Polytechnic Institute of NYU
E-mail: pooyadavoodi@gmail.com

Srinivasa Rao Satti
School of Computer Science and Engineering, Seoul National University
E-mail: ssrao@cse.snu.ac.kr

2 Diego Arroyuelo et al.

operations are supported in O(1) time (amortized in the case of insert/delete op-
erations). We support adding satellite data to the tree nodes using bn+ o(n) extra
bits (versus bn + o(bn) extra bits of the fastest previous dynamic representation
from the literature), while providing several trade-offs for accessing/modifying the
data.

1 Introduction and Previous Work

An ordinal tree (or ordered tree) is a rooted tree where each node has an arbitrary
(usually unbounded) number of children. These children are ordered, such that
there is a first child, a second child, and so on. We say that the i-th child of a node
x has rank i among its siblings. A k-ary cardinal tree is an ordinal tree of degree
k (i.e., nodes have at most k children), where each edge is labeled with a unique
symbol drawn from the alphabet {1, . . . , k}. If we let label(x, i) to denote the label
of the edge that connects x and its i-th child, then it holds that:

label(x, i) < label(x, j)⇔ i < j.

In other words, the edge labels of the children are in the increasing order of their
ranks. This kind of tree are also known as tries of degree k. In a dynamic cardinal

tree, leaf nodes can be inserted or deleted from the tree. In this paper we study the
succinct representation of dynamic cardinal trees, a problem that remained open
for several years [28].

A succinct data structure is one that requires space close to the information-

theoretic lower bound (besides lower-order additive terms). Since the number of
different k-ary cardinal trees with n nodes is 1

kn+1 (kn+1
n) [19], the information-

theoretic lower bound for the number of bits needed to represent a cardinal tree
is:

C(n, k) =

⌈
lg

1

kn+ 1

(
kn+ 1

n

)⌉
,

where lg x will mean log2x throughout this paper. Assuming that k is a growing
function of n, we have that C(n, k) ≈ n(lg k + lg e)− o(n+ lg k) bits.

Besides requiring little space, succinct data structures in general support oper-
ations as efficiently as their non-space-efficient counterparts. In the case of trees,
we are interested in succinct representations that can be efficiently navigated. In
Table 1 we show the tree operations that are supported by the tree representations
in this paper.

1.1 Model of Computation

1.1.1 Word RAM Model

We consider the standard word RAM model of computation, where the memory
is regarded as an array of words numbered 0 to 2w − 1, for w = Θ(lg n). Every
memory word of w bits can be accessed in constant time. Basic arithmetic and
logical operations can be computed in constant time.

Succinct Dynamic Cardinal Trees 3

Table 1 Tree operations supported by our dynamic representation of cardinal trees.

parent(x): Returns the parent of node x.
child(x, i): Returns the i-th child of node x.
label-child(x, α): Returns the child of node x labeled with symbol α ∈ {1, . . . , k}.
child-rank(x): Returns the rank of node x among its siblings.
label(x, i): Returns the label of the i-th child of node x.
degree(x): Returns the number of children of node x.
subtree-size(x): Returns the size of the subtree rooted at node x.
preorder(x): Returns the preorder rank of node x.
ancestor(x, y): Returns true if node x is ancestor of node y; false otherwise.
access-data(x): Returns the data associated to node x.
change-data(x, d): Associates data d to node x.
insert-leaf(x, α): Inserts a new leaf child of node x with label α.
delete-leaf(x, α): Deletes the leaf child of node x with label α.

1.1.2 Dynamic-Memory Model

For the allocation of dynamic memory, we assume that there are no system calls
for allocation and deallocation of memory, but the program must handle memory
by itself. In this model, the space usage of an algorithm at a given time is the
highest numbered memory word that is currently in use by the algorithm (this is
the same as the memory model MB described in [33]. This is one of the standard
dynamic memory models for RAM, and assumes the least from the system.

1.1.3 Model of Tree Operations

We will assume that all navigational operations in the tree start from the tree root
and that insertions and deletions occur at leaves. This is the so-called traversal

model of tree operations. All operations have to be carried out on the current
node, x, of the traversal. This is the same model as in previous work [28,33]. This
model is also usual in many applications, such as constructing the Lempel-Ziv 1978
parsing of a text [4,22] within compressed space, and constructing suffix trees, for
example.

1.2 Previous Related Work

The classical pointer-based representation of a tree requires Θ(n lg n) bits. This
is space consuming [3], hence data-intensive applications can only keep relatively
small trees in main memory. Typical examples are that of DOM trees for XML
documents [18], and suffix trees [1] for full-text search applications, just to name
two.

The seminal work of Jacobson [21] started the quest for the succinct repre-
sentation of trees (and succinct data structures in general). Over the years, trees
have become one of the most successful examples of the application of succinct
data structures. Nowadays, there are many succinct representations of trees that
use sligthly more than 2 bits per node and support a comprehensive set of opera-
tions, both in theory [27,7,32,18,23,14,15,13,30], and in practice [3,24]. We now
summarize the most important results related to our work.

4 Diego Arroyuelo et al.

Succinct Static Cardinal Trees. For static k-ary cardinal trees on n nodes, Benoit
et al. [7] gave a representation that requires 2n + ndlg ke + o(n) + O(lg lg k) bits,
and supports the navigational operations and queries in O(1) time. Hence, the
space bound of their structure is C(n, k) +Θ(n) bits, as k grows. Raman et al. [32]
improved the space to C(n, k) + o(n) + O(lg lg k) bits, while supporting all the
operations, except subtree-size, inO(1) time. Finally, a representation with the same
space that also supports subtree-size in O(1) time was given by Farzan et. al. [14].
Table 2 summarizes the existing succinct representations of cardinal trees.

Succinct Dynamic Binary Trees. Succinct representation of dynamic trees was first
studied for binary trees (i.e., for k = 2). In this case we are interested in operations
left-child(x) (which yields the left child of a node x) and right-child(x) (which yields
the right child of a node x). Since there are 1

2n+1 (2n+1
n) different binary trees with

n nodes, the information-theoretic lower bound is
⌈
lg 1

2n+1 (2n+1
n)

⌉
= 2n−O(lg n)

bits.

Munro et al. [28] gave the first dynamic binary tree representation that uses
2n + o(n) bits. This representation, in the course of traversing the tree, supports
navigational operations and queries in O(1) time and updates in O(lg2 n) amor-
tized time. Their structure can also support accessing a b-bit piece of satellite
data associated with each node in O(1) time, where b = Θ(lg n). If b = O(1),
they achieve O(lg n) amortized update time, and if no satellite data is associated
with the nodes, they obtain O(lg lgn) amortized update time. See Table 3 for a
summary of existing succinct representations of dynamic binary trees.

For b = O(lg n), Raman and Rao [33] improved the update time to
O((lg lgn)1+ε) amortized, while supporting the navigation and queries in O(1)
worst-case time, in the course of traversing the tree. They also showed how to
store the satellite data in bn+ o(n) bits. Their total space is 2n+ bn+ o(n) bits.

More recently, Farzan and Munro [13] proposed the finger-update model, which
is stronger than the traversal model assumed in this paper. In the finger-update
model, only the update operations are restricted to be performed on the current
node of the traversal, whereas all the other operations are allowed to be performed
on any node at any time. For satellite data of b = O(lg n) bits, their data structure
[13] supports the navigation operations in constant time and updates in constant
amortized time. Their structure uses 2n+ bn+o(bn) bits, which is worse than that
of [33] because of the o(bn) term needed to support the satellite data.

Succinct Dynamic Cardinal Trees. Darragh et al. [11] presented a compact form
of representing cardinal trees named Bonsai trees, that uses 6n + ndlg ke bits of
space and supports navigation and inserting new leaves in O(1) expected time.
Their method is essentially a way of storing trees in a compact form of hash table.
The 6 bits that are stored at each node of the tree (which make the 6n bits of
the total space) can be increased to 9 bits or even more in order to obtain a
lower hash collision probability. However, it has been shown that 6 bits provide a
small enough upper bound for the probability [11]. The efficient representation of
succinct dynamic cardinal trees was posed as an open problem by Munro et al. [28].
The problem remained open until Arroyuelo’s work [2], where a representation of
dynamic cardinal trees is introduced, which uses space close to optimal: 2n +
ndlg ke+ o(n lg k) bits. However, just a simple set of operations is provided (child,

Succinct Dynamic Cardinal Trees 5

Table 2 Summary of the existing succinct representation of cardinal trees. Times marked with
‘†’ are amortized. dfuds corresponds to [7], rrr07 corresponds to [32], and frr09 corresponds
to [14]. Notice that these three methods are static.

Operation dfuds rrr07 frr09 Ours Ours
k = O(polylog(n)) k = ω(polylog(n))

parent O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
child O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
label-child O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
child-rank O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
label O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
degree O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
subtree-size O(1) × O(1) O(1) O(lg k/ lg lg k)
preorder O(1) O(1) O(1) O(1) O(lg k/ lg lg k)
ancestor O(1) O(1) O(1) O(1) O(lg k/ lg lg k)

access-data O(1) O(1) O(1) O
(

lg lgn
lg lg lgn

)†
O(lg k/ lg lg k)†

change-data O(1) O(1) O(1) O
(

lg lgn
lg lg lgn

)†
O(lg k/ lg lg k)†

insert-leaf × × × O(1)† O(lg k/ lg lg k)†

delete-leaf × × × O(1)† O(lg k/ lg lg k)†

Space bound on Θ(n) o(n) o(n) Θ(n) + o(n lg k) Θ(n) + o(n lg k)
top of C(n, k)

Space for b-bit bn bn bn bn+ o(n) bn+ o(n)
satellite data

Table 3 Summary of the existing succinct representation of dynamic binary trees. Times
marked with ‘†’ are amortized. mrs01 corresponds to [28], rr03 corresponds to [33], and fm10
corresponds to [13].

Operation mrs01 rr03 fm10 Ours

parent O(1) O(1) O(1) O(1)
left-child/right-child O(1) O(1) O(1) O(1)
subtree-size O(1) O(1) O(1) O(1)
preorder × O(1) O(1) O(1)
ancestor × O(1) O(1) O(1)

access-data O(1) O(1) O(1) O
(

lg lgn
lg lg lgn

)†

change-data O(1) O((lg lgn)1+ε)† O(1) O
(

lg lgn
lg lg lgn

)†

insert-leaf O(lg2 n)† O((lg lgn)1+ε)† O(1)† O(1)†

delete-leaf O(lg2 n)† O((lg lgn)1+ε)† O(1)† O(1)†

space for b-bit bn+ o(n) bn+ o(n) bn+ o(bn) bn+ o(n)
satellite data

label-child, parent, insert-leaf, and delete-leaf), and no support for satellite data is
given. Afterwards, Davoodi and Rao [12] improved the previous result for the case
of small alphabets, namely k = O(polylog(n)). In that case, they show how the
tree operations can be supported in O(1) time (amortized in the case of updates).

6 Diego Arroyuelo et al.

1.3 Contributions of this Work

In this paper we give insight into a problem that has remained almost unexplored
in the area of succinct data structures. We introduce succinct representations of
dynamic cardinal trees, supporting the operations of Table 1 (that is, a more
complete set of operations than those in [2] and [12]) and requiring space close to
the information-theoretic lower bound: 2n+ n lg k + o(n lg k) bits.

In the traversal model and for k = O(polylog(n)), we show that the navigation
operations can be supported in O(1) worst-case time, whereas updates are sup-
ported in O(1) amortized time. If we associate b-bit satellite data to the tree nodes
(for b = O(lg n)), our data structure offers the following space/time trade-offs: (1)
bn+o(n) extra bits of space, O(1) time for operation access-data, and O(lg n/ lg lgn)
amortized time for operation change-data; (2) bn+O(n lg lg n) bits, O(1) time for
access-data, and O(1) amortized time for change-data; and (3) bn+ o(n) extra bits,
and O(lg lgn/ lg lg lg n) amortized time for access-data and change-data. We sum-
marize our results in Table 2. The table also shows results for existing succinct
representations of static cardinal trees.

For k = ω(polylog(n)) (and k = O(n)), on the other hand, we show that the
navigation operations can be supported in O(lg k/ lg lg k) worst-case time, whereas
update operations are supported in O(lg k/ lg lg k) amortized time. Satellite data
can be stored using bn+ o(n) extra bits of space, allowing the access/modification
of the data in O(lg k/ lg lg k) amortized time. These results are also summarized
in Table 2.

Finally, we show that our approaches are suitable to represent dynamic binary
trees. We achieve O(1) time for the navigation operations, and O(1) amortized
time for the update operations. These are the same as Farzan and Munro [13].
For b-bit satellite data, our data structure offers the same three trade-offs as for
k = O(polylog(n)) mentioned earlier. See Table 3 for a summary of our results and
a comparison with previous work.

2 Preliminary Concepts

We summarize next some of the important concepts needed to understand the
results of this paper.

2.1 Data Structures for rank and select Operations

Given a sequence S[1..n] over an alphabet {1, . . . , k} and given any c ∈ Σ, we define
operations:

– rankc(S, i), which yields the number of occurrences of c in S[1..i].
– selectc(S, j), which yields the position of the j-th c in S.
– access(S, i), which yields S[i].

In the dynamic case we also want to insert/delete symbols into/from the se-
quence. The data structure of Navarro and Nekrich [29] supports all the oper-
ations (including insertion and deletion of symbols at arbitrary positions of the

sequence) in O
(

lgn
lg lgn

)
time (amortized in the case of insertions and deletions),

Succinct Dynamic Cardinal Trees 7

using nH0(S) + o(n lg k) bits of space, where H0(S) 6 lg k denotes the zero-order
empirical entropy of S [26].

2.2 Data Structures for Searchable Partial Sums

Given an array A[1..m] of m integers from the range [0..r − 1], a searchable partial

sum data structure [17] allows one to retrieve any A[i], as well as to support the
following operations:

– Sum(A, i), which computes
∑i
j=1A[j];

– Search(A, i), which finds the smallest j such that Sum(A, j) > i;
– Update(A, i, δ), which sets A[i]← A[i] + δ, assuming that A[i] + δ < r, and δ is

less than a certain fixed number;
– Insert(A, i, e), which inserts a new element e into the array A between elements
A[i− 1] and A[i]; and

– Delete(A, j), which deletes element A[j].

This problem has been considered for different ranges of m, r and δ [31,20]. In
particular, in this paper we will need the following result:

Lemma 1 ([30]) There exists a representation for an array A[1..m] of m integers

(each in the range [0..r − 1], for r = O(lgm)) using m lg r(1 + o(1)) bits of space

and supporting the access to any A[i] (1 6 i 6 m), as well as operations Sum, Search,

Update, Insert and Delete in O(lgm/ lg lgm) time.

2.3 Data Structures for Dynamic Arrays

A dynamic array [33] is a data structure that supports accessing, inserting, and
deleting arbitrary elements in arrays. The aim is to support dynamic-array op-
erations fast and with a small memory overhead. For dynamic arrays with few
elements, Raman and Rao [33] obtained the following result:

Lemma 2 ([33,34]) There exists a data structure to represent an array of ` = wO(1)

elements, each of size r = O(w) bits, using `r + O(c lg `) bits, for any parameter

c 6 `. This data structure supports accessing the element of the array at a given index

in O(1) time, and inserting/deleting an element at a given index in O(1 + `r/cw)
amortized time. The data structure requires a precomputed table of size O(2εw) bits for

any fixed ε > 0.

For the general case, Raman et al. [31] obtained the following result:

Lemma 3 ([31]) A dynamic array of n elements, each of size b = O(lg n) bits, can be

represented using bn+o(n) bits of space. This structure supports accessing the element

of the array at a given index, as well as inserting/deleting an element at a given index,

all in O(lg n/ lg lg n) amortized time.

8 Diego Arroyuelo et al.

2.4 Data Structures for Balanced Parentheses and Ordinal Trees

The problem of representing a sequence of balanced parentheses is related to the
succinct representation of trees [27]. Given a sequence P of 2n balanced parenthe-
ses, we want to support the following operations:

– findclose(P, i): given P [i] = ‘(’, returns the position of the matching closing
parenthesis;

– findopen(P, i): given P [i] = ‘)’, returns the position of the matching opening
parenthesis;

– excess(P, i): returns the difference between the number of opening and closing
parentheses up to position i in P ;

– enclose(P, i): given a parenthesis pair whose opening parenthesis is at position
i, returns the position of the opening parenthesis corresponding to the closest
matching pair enclosing i.

Since there are 1
2n+1 (2n+1

n) different sequences of n pairs of matching balanced
parentheses, the information-theoretic lower bound to represent such a sequence
is dlg 1

2n+1 (2n+1
n)e = 2n−O(lg n) bits.

Munro and Raman [27] showed how to implement all these operations in con-
stant time and using 2n + o(n) bits. They also showed the main application of
balanced-parenthesis sequences: the succinct representation of ordinal trees. The
main operations that must be supported by an ordinal tree are:

– first-child(x), which yields the first child of node x (if it exists);
– next-sibling(x), which yields the next sibling of node x (if it exists);
– prev-sibling(x), which yields the previous sibling of node x (if it exists); and
– parent(x), which yields the parent of node x (if it exists).

Given an ordinal tree, the following procedure transforms it into a balanced-
parenthesis sequence (showing a one-to-one mapping between the two classes of
objects): perform a depth-first traversal on the tree and write a ‘(’ in the sequence
P when we visit a node x for the first time, then visit the subtree of x in preorder,
and finally write a ‘)’. In this way, each node x in the tree is represented by a
pair of matching ‘(’ and ‘)’, which enclose the parentheses corresponding to the
nodes in the subtree of x. In particular, node x is represented by the position of
the ‘(’ corresponding to it. The above-mentioned ordinal-tree operations can be
supported via balanced-parenthesis operations [27].

After Munro and Raman’s data structure, several others were introduced,
which extend the supported functionality [25,30].

In the dynamic case, the parenthesis sequence can change over time, by insert-
ing/deleting a pair of matching parentheses into/from the sequence. The dynamic
data structure of Navarro and Sadakane [30] supports the above operations (plus
rank and select on the parenthesis sequence), including also insertions and dele-
tions, in O(lg n/ lg lgn) time. The data structure uses 2n + o(n) bits of space, as
summarized below.

Lemma 4 ([30]) There exists a representation for a dynamic sequence of 2n balanced

parentheses using 2n+ o(n) bits of space and supporting operations findclose, findopen,

excess, enclose, rank, and select, as well as insertions and deletions of pairs of matching

parentheses, all of them in O(lg n/ lg lgn) worst-case time.

Succinct Dynamic Cardinal Trees 9

2.5 Succinct Representation of Static Cardinal Trees

Among the existing succinct representations of static cardinal trees [7,32,23,14],
we are particularly interested in Depth-First Unary Degree Sequence [7] (dfuds,
for short), which seems (at first) easier to dynamize. To get this representation,
we carry out a depth-first traversal on the tree. For every node reached in this
traversal, we write its degree in unary, using parentheses. For instance, a node
of degree 3 is written as ‘((()’, while a leaf is just ‘)’. What we get is almost a
balanced-parenthesis sequence: we only need to add a ‘(’ at the beginning of the
sequence to make it balanced. A node of degree d is identified by the position of
the first of the d+ 1 parentheses representing the node. In the case of a leaf, the
position of ‘)’ is used to represent the node. Let us call D[1..2n] the sequence of
balanced parentheses generated by dfuds.

2.5.1 Supporting Basic Tree Operations

According to [7], the tree operations can be supported in O(1) time by means of
rank, select, and balanced-parenthesis operations on the sequence D as follows:

parent(x) ≡ select)(D, rank)(D, findopen(D, x− 1))) + 1,

child(x, i) ≡ findclose(D, select)(D, rank)(D, x) + 1)− i) + 1,

child-rank(x) ≡ select)(D, rank)(D, findopen(D, x− 1)) + 1)− findopen(D, x− 1),

degree(x) ≡ select)(D, rank)(D, x) + 1)− x,
subtree-size(x) ≡ (findclose(D, enclose(D, x))− x)/2 + 1,

preorder(x) ≡ rank)(D, x− 1),

ancestor(x, y) ≡ true iff x 6 y 6 findclose(D, enclose(D, x)); false otherwise.

2.5.2 Supporting label-child and label Operations

To support label-child(x, α) on dfuds, we define a set L that represents the edge
labels as follows. For each node x in the tree with preorder i = 0, . . . , n− 1 and d

children labeled α1, . . . , αd, let us define the set Ci = {ik+α1, . . . , ik+αd}. Then,
we define L =

⋃n−1
i=0 Ci. Notice that this is similar to the set defined in the proofs of

Theorems 6.1 and 6.2 of [32], except that we use depth-first order here. Actually,
it is the same as the set defined in the proof of Theorem 6 of [14]. Since the tree
has n− 1 edges, it holds that |L| = n− 1. Also, the universe of set L is {1, . . . , kn}.

Set L is represented using the indexable dictionary from [32], using dlg (knn−1)e+
o(n) bits of space, which is C(n, k) + o(n) + O(lg lg k) bits. This data structure
allows us to compute operations rank(L, j) (which returns −1 iff j 6∈ L, otherwise
it yields |{y < j | y ∈ L}|) and select(L, i), which yields the i-th smallest element in
L. Both operations are supported in O(1) time [32].

The operation label-child(x, α) is undefined if rank(L, k · preorder(x) + α) = −1.
Otherwise, we compute it using the equation

label-child(x, α) = child(x, rank(L, k · preorder(x) + α)− (rank((D, x− 1)− 1) + 1),

which can be computed in O(1) time. The operation label(x, i) can also be sup-
ported in O(1) time using the equation

label(x, i) ≡ select(L, rank((D, x− 1)− 1 + i)− k · preorder(x).

10 Diego Arroyuelo et al.

Note that this structure uses C(n, k) + 2n+ o(n) +O(lg lg k) bits of space. To
avoid storing the dfuds sequence (thus saving 2n bits and achieving optimal space
usage, up to lower-order terms), Farzan et al. [14] show how to retrieve from the
encoding of L, any lgn-bit subsequence of the dfuds sequence in constant time.

2.5.3 Satellite Data

Finally, to associate satellite data to the tree nodes, we use an array Data[0..n− 1]
such that Data[preorder(x)] stores the data associated with node x.

3 A Dynamic dfuds Representation for Cardinal Trees

Though recent approaches support insertions and deletions in ordinal trees of n
nodes in O(lg n/ lg lgn) time [30], we are interested in dynamic k-ary cardinal trees
in this paper. We show in this section how the dfuds representation of a tree can
be dynamized. This shall be the building block for the results obtained in later
sections.

3.1 Tree Topology

We represent the dfuds of the cardinal tree with the dynamic data structure of
Lemma 4. We denote this representation by D, which requires 2n+ o(n) bits. The
edge labels are stored in a dynamic sequence L. The labels of the children of node
x are stored contiguously and in order in L, following a depth-first traversal. In
order to compute operation label-child efficiently, we must keep the symbols of a
node always sorted. This means that operation insert-leaf(x, α) must compute the
insertion rank of the new child of x among its siblings, and then insert α in L.

To support this functionality efficiently under insertions, we use gap encoding

for the labels: the label of the first child of a node is stored in absolute form
(i.e., using the actual encoding of the symbol), whereas the remaining labels are
represented in differential form. For instance, if a node x has children labeled a, b
and f , we store a, b−a and f−b in consecutive positions. The opening parentheses
in D are used to index L: if node x has degree d, the consecutive positions

L[rank((D, x)− 1..rank((D, x) + d− 2]

store the symbols labeling the children of x. We represent L using the dynamic data
structure for searchable partial sums with insertions and deletions, of Navarro and
Sadakane [30]. This requires n lg k+o(n lg k) bits of space, and supports searchable-
partial-sum operations in O(lg n/ lg lg n) worst-case time. The overall space re-
quirement for D and L is thus 2n+ n lg k + o(n lg k) bits.

3.2 Supporting Basic Tree Operations

We use the translations of the operations on dfuds given in Section 2.5.1 on the
balanced-parenthesis operations provided in Lemma 4. This supports operations
parent, child, child-rank, degree, subtree-size, preorder, and ancestor in

Succinct Dynamic Cardinal Trees 11

O(lg n/ lg lg n) worst-case time. We add also operation selectnode(i), which yields
the dfuds position of the node with preorder i, and can be computed using select

on the balanced parentheses.

3.3 Supporting label-child and label Operations

To support operation label-child(x, α), let j = rank((D, x) − 1 be the position in L

that stores the label of the first child of node x. Let s = Sum(L, j − 1) be the
sum of the values stored in L up to position j − 1, and let j′ = Search(L, s+ α). If
Sum(L, j′)−Sum(L, j−1) equals α, then the position j′ corresponds to the position
of symbol α within the labels of the children of x (otherwise, there is no child of
x labeled α). Thus the child of x labeled α can be found with child(x, j′ − j), in
O(lg n/ lg lg n) extra time [30].

Operation label(x, i) is computed as Sum(L, j + i − 1) − Sum(L, j − 1), in
O(lg n/ lg lg n) time, where j = rank((D, x)− 1.

3.4 Supporting Updates on dfuds

To perform insert-leaf(x, α), we first compute the rank i of the new child of node
x. Since the children of x are sorted according to the edge labels, we use α to
determine i. We then compute j = rank((D, x)− 1 and j′ = Search(L, s+ α). Notice
that the rank of α is i = j′ − j + 1 (recall that L[j] stores the symbol of the first
child of x). If L[j + i − 1] represents symbol α, the new node cannot be inserted
because there already exists a child of x labeled α. Otherwise, the label α must
be inserted at position j′ of L. (Recall that L is gap encoded, hence we must be
careful when inserting α to maintain this encoding.)

Next, we insert a new i-th child of x. This process is carried out by inserting a
new pair of opening/closing parentheses in D, at positions i′ and i′′, respectively.
Positions i′ and i′′ are computed as follows. The insertion of the new leaf increases
the degree of its parent node x. Since in dfuds a node is represented by its degree
in unary, we must increase the degree of x by adding an ‘(’ at position i′ =
x+degree(y)− i within the representation of x in D. Next we represent the new leaf
node adding a ‘)’ at position i′′ = findclose(D, i′) within D. This shifts to the right the
last ‘)’ in the subtree of the (i−1)-th child of y, which now represents the new leaf.
As the new pair of parentheses is inserted at positions i′ and i′′ = findclose(D, i′),
they are a matching pair. Hence, the insertion can be handled with the data
structure of Lemma 4 in O(lg n/ lg lg n) time. Deletions are carried out in a similar
fashion, decreasing the degree of node x and deleting the leaf.

3.5 Satellite Data

In order to associate b-bit satellite data to the tree nodes, for b = O(lg n), we can
use the dynamic array data structure of Lemma 3. We use the preorder numbering
of the nodes to index into this array.

12 Diego Arroyuelo et al.

3.6 Main Result for Dynamic dfuds

Combining all these structures, we obtain the following result.

Theorem 1 There exists a dynamic dfuds representation for a cardinal tree T of n

nodes and alphabet size k 6 n requiring 2n+ n lg k + o(n lg k) bits of space. This rep-

resentation allows us to compute operations parent, child, label-child, child-rank, label,

degree, subtree-size, preorder, ancestor, selectnode, insert-leaf, and delete-leaf, all in

O(lg n/ lg lg n) worst-case time. If b-bit satellite data is associated with the nodes,

for b = O(lg n), this representation uses bn + o(n) extra bits of space. Operations

access-data and change-data are supported in O(lg n/ lg lg n) amortized time.

4 Succinct Dynamic Cardinal Trees for Moderate-sized Alphabets

We introduce in this section a succinct representation of dynamic cardinal trees of n
nodes. This representation works for any k = O(n), yet it is able to take advantage
over the data structure of Theorem 1 when k is asymptotically smaller than n

(more specifically, when lg k = o(lg n/ lg lgn)). Also, when k = O(polylog(n)), we
describe another structure in Section 5 that supports all operations in constant
time. Thus the representation of introduced in this section is efficient for moderate-
sized alphabet. Since we handle the small alphabets separately, in this section we
assume that the alphabet size k is ω(lg n) (to simplify the complexity terms).

4.1 Decomposition into Micro Trees

To support efficient navigation and updates of the tree, we incrementally decom-
pose it into disjoint micro trees of bounded size, as nodes are inserted or deleted
from the tree. This is similar to previous approaches [28,33,13]. However, in our
case k can be big, and hence we face additional challenges. In particular, to support
operation label-child, every node x must store (somehow) the labels of its children
in a data structure that allows us to compute the rank of a given symbol among
the symbols labelling the children of x [7,32,14]. Thus, we cannot use the tree-
decomposition schemes of [18,13] as such. We shall first redefine the bounds for
the micro-tree sizes in order to achieve the desired space and time costs, as well
as define a way to determine the split point of a micro tree when it becomes too
large, among other things.

Every micro tree τ of |τ | nodes represents a connected component of the original
tree, such that nm/2 6 |τ | 6 nM , for given minimum and maximum micro-tree
sizes nm/2 and nM , respectively. We arrange these micro trees in a tree by adding
pointers between micro trees, and thus the entire tree is represented by a tree of

micro trees.

Definition 1 Given a micro tree τ , we denote by τ1, . . . , τnf (τ) its nf (τ) child micro
trees. We say that τ is adjacent to each τi, for i = 1, . . . , nf (τ), and viceversa.

For each internal node x of the original tree we have that x is internal to a
micro tree τ , or x is a leaf of τ .

Succinct Dynamic Cardinal Trees 13

Definition 2 A node x in micro tree τ is called a boundary node iff x is a leaf in τ

but not a leaf of the whole tree. We denote by Bτ the set of boundary nodes of τ .

The j-th boundary node x (in preorder) stores a pointer to a child micro tree
τj . This micro tree τj is the starting point of the subtree of node x. We duplicate
the boundary node x by storing it as a fictitious root of τj , hence it has two
representations:

1. As a leaf in micro tree τ ; and
2. As the root node of the child micro tree τj .

These two points introduce the following property.

Property 1 Given a non-leaf node x in a micro tree τ such that x 6∈ Bτ , all the child
nodes of x also belong to τ .

Note also that this property implies that sibling nodes belong all to the same
micro tree. These properties, along with the fact that every micro tree is a tree by
itself will be useful later to simplify the navigation on the tree. Also, it shall ensure
that a micro tree can be always partitioned in the right way when it achieves the
maximum allowed size. From now on, we use the subscript τ to indicate the tree
operations that are local to micro tree τ . Hence, we have operations insert-leafτ ,
childτ , degreeτ , and so on.

4.2 Defining Micro-Tree Sizes

Minimum Micro-Tree Size. Pointers between adjacent micro-trees must use o(n)
bits overall. Hence, a pointer of w = Θ(lg n) bits must point to a micro tree of
ω(lg n) nodes. In particular, we define nm = lg3 n. Recall that the micro trees in
our data structure have at least nm/2 nodes. The factor 1/2 will be made clear in
the amortized analysis of deletions, in Section 4.8.8.

Maximum Micro-Tree Size. A micro tree τ should have room to store at least the
potential k children of the micro-tree root (recall that sibling nodes must belong to
the same micro tree). Also, we must define nM in such a way that when inserting
a node in a micro tree τ of maximal size nM (i.e., the micro tree overflows) we
can split τ to create a new child micro tree τ ′. It is important to note that after
creating τ ′, both τ and τ ′ must have size at least nm/2. Actually, we will define
nM such that micro trees can be created with at least nm nodes. This will be
needed to amortize the cost of deletions (Section 4.8.8).

By defining nM = 2knm, the case that generates the smallest possible new
micro tree τ ′ is as follows: the root of micro tree τ has its k possible children, the
subtree of each such child having nm nodes. Thus, upon a micro-tree overflow, any
such subtrees can be detached to create the new child micro tree. The factor 2 in
the definition of nM is needed for the proof of the amortized cost of insertions (see
Section 4.8.7).

Definition 3 A node z of micro tree τ is called a splitting node if nm 6
subtree-sizeτ (z) < knm. We denote Splitτ the set of splitting nodes of τ .

14 Diego Arroyuelo et al.

The idea is that upon the overflow of micro tree τ , any node z ∈ Splitτ can be
used to split τ . Standard dynamic approaches based on tree decomposition [28,33,
13] use micro-tree representations which are updated using precomputed lookup
tables. However, in our case micro trees are larger, and hence the precomputed
tables would require a prohibitively large amount of space. Thus, we must use
appropriate dynamic data structures to represent the micro trees.

4.3 The Micro Tree Layout

Every micro tree τ of |τ | nodes, having nf (τ) child micro trees and root node rτ is
represented by an 8-tuple 〈Dτ , Lτ , PTRτ , Bτ , Splitτ , Sizeτ , Dataτ , pτ 〉 as follows:

– Dτ : the tree topology of the micro tree;
– Lτ : the edge labels of τ ;
– PTRτ : the nf (τ) pointers to child micro trees;
– Bτ : the nf (τ) boundary nodes of τ ;
– Splitτ : the splitting nodes of τ ;
– Sizeτ : the subtree size of the nf (τ) boundary-node subtrees;
– Dataτ [0..|τ | − 1]: the b-bit satellite data associated to the nodes of τ ; and
– pτ : space to store the pointer to the representation of rτ in the parent micro

tree.

We show next how each of these components is represented.

4.4 Tree Topology and Edge Labels of Micro Trees

We represent the tree topology Dτ and the edge labels Lτ of each micro tree τ with
the dynamic dfuds data structure of Theorem 1. Hence, the tree operations within
a micro tree are supported in O(lg |τ |/ lg lg |τ |) time. Since in our case |τ | 6 k lg3 n

and k = ω(lg n), the operations on Dτ are supported in O(lg k/ lg lg k) worst-case
time. The overall space requirement of the tree structure for all micro trees sums
up to 2n+ n lg k + o(n lg k) bits.

4.5 The Boundary Nodes of Micro Trees

The boundary Bτ of τ must be represented such that we can support membership
queries on it, as well as insertions and deletions (i.e., we need a dictionary data
structure). In particular, we represent the boundary of τ using a conceptual sorted
array Preτ [0..nf (τ)] that stores the local preorders (i.e., the preorder within micro
tree τ) of the nf (τ) nodes in the boundary, except for Preτ [0] = 0.

Since the preorder of a node can change upon updates in Dτ , we need to keep
Preτ up to date. To avoid reconstructing Preτ in linear time upon updates of τ ,
we represent the boundary with array Bτ [1..nf (τ)]. We gap-encode Bτ such that
Bτ [i] = Preτ [i]− Preτ [i− 1], for i = 1, . . . , nf (τ). Array Bτ is maintained using the
searchable-partial-sum data structure of Lemma 1. Thus, the j-th boundary node
(in preorder) is obtained as Preτ [j] ≡ Sum(Bτ , j). Finally, for testing membership
in Bτ , we make use of the fact that x ∈ Bτ iff Preτ [Search(Bτ , preorderτ (x))] =
preorderτ (x).

Succinct Dynamic Cardinal Trees 15

Analysis of the Data Structure. The total number of entries in arrays Bτ equals
the number of micro trees (because each boundary node stores a pointer between
adjacent micro trees). Hence, the overall space requirement can be easily proved
to be o(n) bits.

The j-th node in the boundary (i.e., the conceptual value Preτ [j]), can be ob-
tained in O(lg |τ |/ lg lg |τ |) time. Membership in Bτ can also be tested in
O(lg |τ |/ lg lg |τ |) time. Since in the worst case |τ | = nM , the time for these op-
erations is O(lg k+lg lgn

lg (lg k+lg lgn)), which is O(lg k/ lg lg k) as k = ω(polylog(n)). The

node represented by Bτ [j] can be obtained with selectnodeτ (Sum(Bτ , j)). The total
time is again O(lg k/ lg lg k).

4.6 Pointers to Child Micro Trees

In micro tree τ we store pointers to child micro trees in the conceptual array
PTRτ [1..nf (τ)], sorted according to the preorders of the nodes in the boundary of
τ . That is, PTRτ [i] stores a pointer to micro tree τi. The array functionality for
PTRτ can be easily achieved by simplifying, for instance, the dynamic partial sum
data structure of Lemma 1, such that only accesses to any PTRτ [i], insertions and
deletions are supported.

Space Usage of Pointers. The overall number of pointers equals the number of micro
trees in the structure, which is O(n/ lg3 n). Thus, the overall space for pointers is
o(n) bits.

4.7 Satellite Data

To associate b-bit sattelite data to the tree nodes, for b = O(lg n), we store a
dynamic array Dataτ [0..|τ | − 1] in each micro tree τ . As usual, array Dataτ is
indexed using operation preorderτ : the data for node x in τ is stored at position
Dataτ [preorderτ (x)]. We use the representation of Lemma 3, using b|τ |+ o(|τ |) bits
of space.

Analysis. The overall space usage of arrays Dataτ over the entire tree is bn +
o(n) bits. According to Lemma 3, accessing the data associated to a node takes
O(lg |τ |/ lg lg |τ |) = O(lg k/ lg lg k) amortized time. Inserting and deleting the data
associated to a given node also takes O(lg k/ lg lg k) amortized time.

4.8 Supporting Tree Operations

We support now the basic navigation operations for our dynamic data structure.

16 Diego Arroyuelo et al.

4.8.1 Operations child, label-child, child-rank, and label

To compute child(x, i), if node x is not a leaf in Dτ we simply use operation
childτ (x, i) in micro tree τ (because node x and its children belong all to τ). If, on
the other hand, node x is a leaf in Dτ , we check whether x ∈ Bτ or not. If not, x is
a leaf of the tree and hence operation child gets undefined. Otherwise, x is the root
of the child micro tree τj , for j = Search(Bτ , preorderτ (x)). In this case, we follow
the pointer PTRτ [j] to micro tree τj . Finally, childτj (x, i) on the root x of τj yields
the i-th child of x we are looking for. Operations label-child(x, α), child-rank(x),
and label(x, i) are computed similarly, using label-childτj (x, α), child-rankτj (x), and
labelτj (x, i), respectively.

Analysis. Because of the searchable-partial-sum operations on Bτ , either oper-
ation child, label-child, child-rank, and label are supported in O(lg |τ |/ lg lg |τ |) =
O(lg k/ lg lg k) time.

4.8.2 Operation parent(x)

If x is not the root of micro tree τ , the operation is computed locally by using
operation parentτ (x). Otherwise, we must first move to the parent micro tree τ ′.
In the traversal model, notice that we have arrived to τ navigating from τ ′. Recall
that each micro tree τ has space to store a pointer pτ to the parent micro tree τ ′.
However, we only store the parent pointers for those nodes (micro tree roots) that
are on the root-to-current-node path. Every time we get to micro tree τ , we store
in pτ the pointer to its parent micro tree τ ′, as well as the integer j such that τ is
the j-th child of τ ′. Every time we must move from τ to its parent τ ′, on the other
hand, we retrieve the pointer to τ ′ and the j value. We then compute the position
of the representation of x in the parent micro tree τ ′ as selectnodeτ ′(Sum(Bτ ′ , j)).
Finally, we use parentτ ′(x) in micro tree τ ′ to get the node we are looking for.

Analysis. Operation parent is supported in O(lg k/ lg lg k) time.

4.8.3 Operation degree(x)

As in the case of parent and child operations, we first check whether node x is a
boundary node of τ . If x is not a boundary node, we use return its local degree,
degreeτ (x). Otherwise, we first follow the pointer to the child micro tree τj and
apply operation degreeτj on the root node of τj .

Analysis. The total time for operation degree(x) is therefore O(lg k/ lg lg k).

4.8.4 Operation subtree-size(x)

We adapt the method of [33] to our data structure. If the subtree of x is completely
contained in micro tree τ (i.e., there are no boundary nodes in the subtree rooted
at x, which corresponds to the case p1 = p2, where p1 and p2 are defined below), we
can simply return subtree-sizeτ (x). However, the subtree of x can span more than
just one micro tree. We use here the array Sizeτ [1..nf (τ)]. The idea is that Sizeτ [j]

Succinct Dynamic Cardinal Trees 17

stores the number of nodes of the subtree pointed by PTRτ [j]. We represent Sizeτ

with the data structure for searchable partial sums of Lemma 1. If x does not lie in
the boundary of micro tree τ , let Sizeτ [p1..p2] the segment of Sizeτ corresponding
to node x, where p1 = Search(Bτ , preorderτ (x)) and p2 = Search(Bτ , preorderτ (x) +
subtree-sizeτ (x)− 1). Then subtreesize can computed using:

subtree-size(x) = subtree-sizeτ (x)+Sum(Sizeτ , p2)−Sum(Sizeτ , p1−1)−(p2−p1+1).

Note that the latter term is for subtracting the number of duplicated nodes in the
portion of the boundary corresponding to the local subtree of x.

Analysis. The extra space requirement is o(n) bits. After the insertion or deletion
of a node, arrays Sizeτ in the path from the tree root up to the node must be
updated accordingly. As we assume the traversal model, this cost amortizes with
the traversal. Operation subtree-sizeτ can be computed in O(lg |τ |/ lg lg |τ |) time
according to Theorem 1. Operation Sum, on the other hand, is also computed in
O(lg |τ |/ lg lg |τ |) according to Lemma 1. The total time for operation subtree-size

is thus O(lg k/ lg lg k).

4.8.5 Operation preorder(x)

The preorder of a node x in the tree can be decomposed into three components:
(1) the preorder number of the micro-tree root rτ ; (2) the preorder number of x
within micro tree τ ; and (3) the sum of the subtree sizes of the boundary nodes of
micro tree τ whose preorder is smaller than that of x. Thus the preorder number
can be computed using the following equation:

preorder(x) = preorder(rτ) + preorderτ (x) + Sum(Sizeτ , p)− p,

where p = Search(Bτ , preorderτ (x)) − 1. Here, preorder(rτ) is computed incremen-
tally, as follows. Every time a descent in the tree starts from the tree root,
we set s ← 0. While descending, if we go to a child micro tree, say from the
boundary node x′ in the current micro tree τ ′, we do the following. First, let
p1 ← Search(Bτ ′ , preorderτ ′(x′)) the entry of Sizeτ ′ corresponding to x′. Then, we
update s← s+preorderτ ′(x′)+Sum(Sizeτ ′ , p1−1)− (p1−1). Upon arriving at the
root rτ of micro tree τ , the current value of s is the preorder number of rτ . Notice
that this does not affect the time complexity of operations child and label-child.

Analysis. The time for computing operation preorder is clearly O(lg k/ lg lg k).

4.8.6 Operation ancestor(x, y)

ancestor(x, y) is true iff preorder(x) < preorder(y) < preorder(x)+subtree-size(x). Thus,
it can supported in O(lg k/ lg lg k) time using preorder and subtree-size operations.

4.8.7 Operation insert-leaf(x, α)

Assume that node x belongs to micro tree τ . Hence, we must update τ accordingly.
As in Section 3.4, we first use L to compute the rank of the new symbol α among
its siblings, and then insert α into L. Then, we use the rank of α to insert the new
node in Dτ , using operation insert-leafτ .

18 Diego Arroyuelo et al.

Updating the Boundary of a Micro Tree. Let y denote the new inserted node. Note
that y increments (by one) the preorders of some nodes in micro tree τ , therefore
we must update the boundary of τ . Indeed, after inserting y, the preorder number
of every node that whose preorder number is greater or equal to that of y must be
incremented to reflect the change. The gap encoding used for Bτ and the searchable-
partial-sum data structure used to represent it allows us to do this efficiently.

The idea is to look for position j = Search(Bτ , preorderτ (y)) in Bτ , which corre-
sponds to the left-most preorder to be incremented. Next, we increment Bτ [j] ←
Bτ [j] + 1 by using operation Update. Since the preorder numbers are obtained by
means of operation Sum on Bτ , this single increment of Bτ [j] automatically incre-
ments all preorder numbers represented by positions j′ > j in Bτ . As the parent
pointers actually point to the leaves of the searchable-partial-sum tree TBτ , this
also updates the parent pointers for the child micro trees of τ . The insertion cost
according to this procedure is O(lg |τ |/ lg lg |τ |) = O(lg k/ lg lg k) time, because of
the time to update Bτ .

Micro-Tree Overflow. When inserting in a micro tree τ of maximal size nM , we must
first split τ into two smaller micro trees. To carry out the split, we first select a
splitting node z in τ . Every node in the local subtree of z (i.e., the descendants of
z that belong to τ) will be reinserted in a new (initially empty) child micro tree
τ ′ (including z itself). Then, they will be deleted from τ , leaving node z still in
τ . This attains the desired effect of storing node z along with its children in τ ′

and along with its siblings and parent in τ , keeping the properties of our data
structure, as defined in Section 4.1.

When the local subtree of node z is reinserted in τ ′, we also copy to τ ′ the
portions of arrays Bτ and PTRτ corresponding to the subtree of node z, via insertions
in Bτ ′ and PTRτ ′ and the corresponding deletions in Bτ and PTRτ . Next, we insert
a new pointer in PTRτ , pointing to micro tree τ ′ and add node z to the boundary
of τ . We also add a parent pointer in τ ′, pointing to the leaf corresponding to z

in the tree TBτ . In this way we keep up-to-date all of the parent pointers of the
children of τ .

After the micro-tree split, the insertion of node y is carried out in the appro-
priate micro tree, either τ or τ ′. Notice that both micro trees have room for a
new node, hence no overflow is produced this time. This is important in order to
upper-bound the cost of an insertion.

Maintaining the Splitting Nodes. To have a good amortized cost, the overall splitting
process must be carried out in time proportional to subtree-sizeτ (z). This can be
achieved on Dτ , Lτ , Bτ , and PTRτ by using the corresponding insert and delete
operations. However, the question is how to efficiently choose a splitting node z.
We cannot carry out a linear search in the micro tree, as for general k this cost
can be bigger than subtree-sizeτ (z), and would not amortize the cost.

To quickly find the splitting node z, we maintain the set of splitting nodes
Splitτ for each micro tree τ . We represent Splitτ using the same dynamic dic-
tionary data structure as for Bτ , using gap encoding over a searchable-partial-sum
data structure.

To maintain Splitτ up-to-date, we dynamically sample nodes of Dτ such that
every time we need to split τ , it holds that |Splitτ | > 1. We must also ensure that
the space for the Splitp data structures is o(n) bits for the whole tree.

Succinct Dynamic Cardinal Trees 19

The idea is that every time we descend in the tree we maintain the last visited
node z in micro tree τ such that subtree-sizeτ (z) > nm holds. When we find the
insertion point of the new node y, say at micro tree τ , before adding z to Splitτ
we first carry out:

• p1 ← Search(Splitτ , preorderτ (z)),

and then

• p2 ← Search(Splitτ , preorderτ (z) + subtree-sizeτ (z)− 1).

Then, we add z to Splitτ whenever:

1. Node z is not the root of micro tree τ ; and
2. There is no other splitting node in the subtree of z (which is true iff p1 = p2).

If across the descent we have already found a splitting node z′ in Splitτ which is
an ancestor of z, then after inserting z into Splitτ we delete z′ from Splitτ . In
this way we keep the lowest splitting nodes z, meaning that no other node in the
local subtree of z could be a splitting node by itself. This is a key to bound the
maximum size that the local subtree of a splitting node can have (as the lemma
below shows). Also, we avoid the case where the local subtree of a splitting node
becomes too large over time, which would not guarantee a fair micro-tree split.

Lemma 5 For every splitting node z in Splitτ , it holds that subtree-sizeτ (z) < knm.

Proof Since we maintain the lowest splitting nodes for each node z in Splitτ , for
every descendant z′ of z, subtree-sizeτ (z′) < nm. In this way, the biggest splitting-
node subtree is one where z has k children, each child having a local subtree of
nm − 1 nodes. Hence, this subtree has local size 1 + k(nm − 1) < knm. ut

Remark 1 For every splitting node z in Splitτ , nm 6 subtree-sizeτ (z) < knm.

Also, we can easily prove that after every split, the two resulting micro trees
(τ and τ ′) have both size between nm and nM .

Notice that for a given splitting node z, there are no splitting nodes in its local
subtree. Thus, we have a splitting node out of (at least) nm nodes and, hence, the
total space to manage them is o(n) bits. We also ensure that every time a micro
tree becomes full, we have at least one splitting node in Splitτ , because every full
micro tree has a local subtree of size at least nm. Finally, choosing a splitting node
from Splitτ takes O(lg k/ lg lg k) time.

Amortized Analysis. Summarizing, when a micro tree overflows, we choose a split-
ting node whose local subtree is reinserted into a new initially-empty micro tree.
The reinsertion cost is proportional to the size of the reinserted subtree, which is
O(lg k/ lg lg k) per reinserted node. The first time a node is reinserted into another
micro tree, the reinsertion cost amortizes with the cost of the original insertion.
Unfortunately, there are no bounds on the number of times a node can be rein-
serted. Hence, in further reinsertions of a node it is not clear how the reinsertion
cost can be amortized. We use next an accounting argument [10] to prove that the
cost of every reinsertion amortizes with the cost of inserting (for the first time)
other nodes.

20 Diego Arroyuelo et al.

Let ĉ = 2 be the cost paid the first time a node is inserted into the tree. Let
c = 1 be the actual cost of an insertion. Every insertion will spend one unit for the
insertion itself and will reserve the remaining unit to pay for the future reinsertion
of a node. For the analysis, let us think that every micro tree τ of the tree maintains
a separate reserve Rτ . When a micro tree τ is created after a split, its reserve is set
to Rτ ← 0. Every time a micro tree overflows, its reserve is decreased by Iτ ′ , the
initial size of the new child micro tree τ ′. We prove now that every time a micro
tree overflows, it has enough reserves to pay for the costly operation of reinserting
a set of nodes.

Let nm 6 Iτ < knm be the initial number of nodes of a micro tree τ . The only
exception is the root micro tree, where Iτ = 0 holds.

Lemma 6 Every time a micro tree τ overflows and a new child micro tree τ ′ of Iτ ′

nodes is created, it holds that Iτ ′ < Rτ .

Proof When a micro tree τ overflows, its reserve is Rτ = nM − Iτ . Because of
Lemma 5, we have that Iτ < knm and Iτ ′ < knm. Hence, Iτ + Iτ ′ < 2knm = nM .
Hence, Iτ ′ < nM − Iτ = Rτ . ut

This proves that Rτ , the reserve of τ , is bigger than the size of the new micro tree
τ ′. In other words, every time we reinsert a node, its cost has been already paid
by the original insertion of another node. Thus, the amortized cost of insertions is
O(lg k/ lg lg k).

4.8.8 Operation delete-leaf(x, α)

To delete a leaf node y = label-child(x, α) in micro tree τ , we update the data
structure by using operation delete-leafτ . After deleting the node, we check whether
there is a splitting node z in Splitτ which is an ancestor of x and whose subtree
becomes smaller than nm after deleting y. As there is at most one ancestor of y
in Splitτ , z is the node at position Search(Splitτ , preorderτ (y))− 1 of Splitτ ; the
subtraction comes from the fact that with the search in Splitτ we find a splitting
node which is next (in preorder) to z in Splitτ . After deleting z from Splitτ , we
try to insert in Splitτ the last node z′ found in the descent (carried out to find
the deletion point) whose subtree size is at least nm, following the same policies
as for operation insert-leaf.

Micro Tree Underflow. If we delete y from a micro tree τ of size nm/2, then a micro

tree underflow occurs. In such a case, we find the representation of the micro-tree
root rτ in the parent micro tree τ ′, by using the parent pointer. From that node
we insert all nodes of τ into τ ′. Note that in the worst case there will be only one
micro-tree overflow in τ ′ when reinserting, since τ has less than nm/2 nodes, and
after an overflow in τ ′ there will be room for at least nm new nodes. If τ is not a
leaf in the tree of micro trees, we insert the boundary of τ into the boundary of τ ′.

Amortized Analysis. Let d̂ = 2 be the amortized cost of deletions, d = 1 being the
actual deletion cost, i.e., every deletion uses one unit for the deletion itself and
reserves the remaining unit in Rτ . Recall that micro trees are created with at least
nm nodes (Remark 1) and Rτ = 0. Since underflows occur when a micro tree has

Succinct Dynamic Cardinal Trees 21

less than nm/2 nodes, we ensure that at that point Rτ > nm/2 holds. Equality
holds in case of micro trees that were created with nm nodes, then received no
insertions, and finally nm/2 deletions are carried out on it. This means that we
have enough reserves to pay for the reinsertion of nm/2 nodes into the parent micro
tree τ ′. In τ ′, each reinsertion is treated as a normal insertion, increasing Rτ ′ as
explained for operation insert-leaf. Overall, there are always enough reserves to pay
for overflows and underflows, thus the amortized cost of deletions is O(lg k/ lg lg k).

4.9 Managing Dynamic Memory

The model of memory allocation is a fundamental issue of succinct dynamic data
structures, since we must be able to manage the dynamic memory fast and without
requiring much extra memory space due to memory fragmentation. Recall from
Section 1.1 that we have assumed the MB memory model from [33].

We manage the memory of every micro tree separately, each in a “contiguous”
memory space. However, micro trees are dynamic and therefore this memory space
must grow and shrink accordingly. If we use an Extendible Array (EA) [8] to manage
the memory of each micro tree, we end up with a collection of at most O(n/ lg3 n)
EAs, which must be maintained under the operations:

– create, which creates a new empty EA and adds it to the collection;
– destroy, which destroys an EA from the collection;
– grow(A), which increases the size of array A by one;
– shrink(A), which shrinks the size of array A by one; and
– access(A, i), which returns the i-th item of array A.

Raman and Rao [33] show how access can be supported in O(1) worst-case time,
create, grow and shrink in O(1) amortized time, and destroy in O(s′/w) time, where
s′ is the nominal size (in bits) of array A to be destroyed. (The nominal size of
an array of size n where each element is stored in b bits is nb bits.) The space
requirement for the whole collection is s +O(a∗w +

√
sa∗w) bits, where a∗ is the

maximum number of EAs that ever existed simultaneously in the collection, and
s is the nominal size of the collection.

Analysis of Time Complexity. We first analyze the time overhead introduced due
to dynamic-memory management. To simplify the analysis we store every micro-
tree component in different collection of EAs (i.e., we have a collection for Dτ ,
a collection for Lτ , and so on). The memory for Dτ , Lτ , and Dataτ inside the
corresponding EA is managed as in [30,31]. For the case of Bτ , Splitτ , Dataτ , and
PTRτ we manage the corresponding EA by using standard techniques to allocate
and free dynamic memory.

We use operation grow on the corresponding EA every time we insert a node
in the tree, operation shrink when we delete a node, and operation create upon
micro tree overflows, all of them in O(1) amortized time. Operation destroy, on
the other hand, is used upon micro tree underflows. Consider the EA collection
storing Lτ for every micro tree τ of the tree. The micro tree τ ′ which underflows
has size less than (lg3 n)/2 and thus the nominal size of the EA storing Lτ ′ is less
than Θ(lg3 n · lg k) bits. Therefore operation destroy takes Θ(lg2 n · lg k) time, which
is negligible since we must reinsert all nodes of τ ′ in the parent micro tree, at a

22 Diego Arroyuelo et al.

higher total cost. Using a similar analysis, destroy on Dataτ takes O(lg3 n) time,
which is also negligible. The EAs storing the remaining components of τ ′ can be
destroyed even faster.

Analysis of Space Usage We analyze now the space overhead due to memory frag-
mentation. For the analysis, it is important to note that every time lg n changes,
the tree must be rebuilt from scratch to adapt the changes. This also involves
rebuilding the data structures needed to maintain the collections of EAs. The
amortized cost of update operations over the tree still remains the same. Let n′ be
the maximum number of nodes that ever existed in the tree since the last recon-
struction (i.e., the last change of lg n). As reconstructions occur when n is a power
of two, then both n and n′ lie between (the same) two consecutive powers of two,
and thus we can prove that n 6 n′ 6 2n holds, which means n′ = Θ(n). Thus,
we can conclude that the maximum number of EAs that we can have between
reconstructions is a∗ = O(n/ lg3 n).

The nominal size of the EA collection for Dτ s is 2n + o(n) bits. Then, this

collection requires 2n + o(n) + O
(

n
lg2 n

+ n
lgn

)
= 2n + o(n) bits of space [33].

The nominal size of the collection for Lτ s is n lg k + o(n lg k), and thus we have

n lg k + o(n lg k) + O
(

n
lg2 n

+ n√
lgn

)
= n lg k + o(n lg k) bits overall. For Dataτ ,

the nominal size is bn + o(n) bits, hence the total space usage is bn + o(n) +

O
(

n
lg2 n

+ n√
lgn

)
= bn+ o(n) bits, for any b = O(lg n).

The overall result is that o(n lg k) extra bits are used because of dynamic
memory fragmentation.

4.10 The Overall Result for Moderate-sized Alphabets

Combining all these structures, we obtain the following result for k = ω(lg n):

Theorem 2 There exists a representation for dynamic cardinal k-ary trees on n nodes,

for any k = ω(lg n), using 2n + n lg k + o(n lg k) bits of space, supporting parent,

child, label-child, child-rank, label, degree, subtree-size, preorder, and ancestor, all in

O(lg k/ lg lg k) worst-case time, and insert-leaf and delete-leaf in O(lg k/ lg lg k) amor-

tized time. If b-bit satellite data is associated with the tree nodes, for b = O(lg n),

this representation uses bn + o(n) extra bits of space. The data of a node can be ac-

cessed/modified in O(lg k/ lg lg k) amortized time. The space and time bounds are valid

in the standard model MB of memory allocation.

5 Succinct Dynamic Cardinal Trees for Small Alphabets

We consider now the case where the size of the alphabet is small, in particular k =
(lg n)O(1). In such a case, the data structure of Theorem 2 supports the operations
in O(lg lgn) time (amortized in the case of updates). We introduce next a succinct
representation for cardinal trees which also uses 2n+ n lg k + o(n lg k) bits and is
able to squeeze the operation times to O(1) when k = (lg n)O(1).

The basic structure is similar to that of Section 4. The input tree is decomposed
into disjoint micro trees. Each operation is performed within the micro tree that

Succinct Dynamic Cardinal Trees 23

contains the current node of the traversal, and in the case of the navigational oper-
ations, we might traverse to an adjacent micro tree. The micro tree representation
of Section 4 supports the operations in logarithmic time (for general alphabets).
We improve here the time to O(1) for small alphabets.

5.1 Tree Decomposition

We use the greedy decomposition algorithm of [28] to decompose the input tree
to micro trees of size in the range [lg2 n..k2 lg2 n]. The micro tree containing the
root might be smaller than lg2 n. This algorithm performs a postorder traversal of
the tree. During the traversal, every at least lg2 n visited nodes make a micro tree
(see [28] for more details). We modify the algorithm of [28] slightly to satisfy the
conditions and the properties of Section 4.1.

5.2 Micro Tree Representation

Every micro tree τ of |τ | nodes, having nf (τ) child micro trees and root node rτ is
represented by a 7-tuple 〈Dτ , Lτ , PTRτ , Bτ , Sizeτ , Dataτ , pτ 〉, defined as in Section 4.

Notice that, unlike the representation of Section 4, here we do not have an
explicit set of splitting nodes in the micro trees. This is because this time the
micro trees have Θ(polylog(n)) nodes and, upon overflows, micro trees will be
split into two micro trees whose size is also Θ(polylog(n)). Hence, splitting nodes
can be sought by traversing the micro tree, with no time penalties.

For each of the seven micro-tree components, we make data structures to per-
form the corresponding operations on them efficiently. The space usage of these
data structures for a micro tree τ is 2|τ | + |τ | lg k + o(|τ | lg k) bits, which makes
the total space usage 2n + n lg k + o(n lg k) bits since the micro trees are roughly
disjoint (they only intersect each other at the boundary nodes). In the following,
we describe all the seven components of the micro-tree representations.

5.3 Tree Topology and Edge Labels of Micro Trees

We present Dτ and Lτ , the first two parts of the 7-tuple that represents a micro
tree τ . The data structure Dτ represents the topology of τ using 2|τ |+ o(|τ |) bits
and supports all the tree operations except label-child, insert-leaf, and delete-leaf,
within τ in O(1) time. This data structure is able to insert and delete nodes in
τ , however it cannot perform insert-leaf and delete-leaf since these two operations
involve edge labels which are not stored by Dτ . Thus, we also design the dynamic
data structure Lτ which represents the edge labels of τ using |τ | lg k + o(|τ | lg k)
bits and supports label-child in O(1) time. The two update operations insert-leaf

and delete-leaf can be then performed using both data structures Dτ and Lτ in
O(1) amortized time. In the following, we first describe Dτ and then Lτ :

5.3.1 Dτ : Representation of the Topology of Micro Trees

We represent the topology of a micro tree τ by its dfuds sequence. More specifi-
cally, we maintain Dτ as a dynamic dfuds representation of τ . Recall from Section

24 Diego Arroyuelo et al.

2.5 that a dfuds representation of a static ordinal tree with n nodes supports the
navigational and query operations on the tree in constant time using 2n + o(n)
bits. Such a data structure consists of the dfuds sequence of the tree in addition to
sub-structures that support rank, select, findclose, findopen, and enclose operations
on the sequence. Here, we show how to dynamize such a dfuds representation for
a small enough ordinal tree, which is then used as Dτ . The operations insert-leaf

and delete-leaf, in an ordinal tree, respectively insert and delete a leaf that is the
i-th child of a node for a given i. The following lemma states this result:

Lemma 7 An ordinal tree τ , where |τ | = polylog(n), can be maintained using a

dynamic dfuds representation of size 2|τ | + o(|τ |) bits that supports the operations

parent, child, degree, subtree-size, ancestor, preorder, insert-leaf, and delete-leaf in O(1)
time (updates are amortized). The structure assumes access to precomputed tables of

size o(n) bits, which are independent of τ .

As described in Section 2.5, a dfuds representation can be obtained by con-
structing a data structure supporting operations rank, select, findclose, findopen, and
enclose on the dfuds sequence. In our application, the length of the dfuds sequence
is polylog(n). We note that the update operations insert-leaf and delete-leaf on the
ordinal tree can be also supported by inserting and deleting a pair of matching
parentheses in the dfuds sequence (see Section 3.4). In the following, we describe
how we handle the problem of constructing a dynamic data structure for balanced
parentheses.

Dynamic data structure for balanced parentheses. We briefly describe the data struc-
ture of [9, Section 5] that maintains a sequence of m 6 n pairs of balanced paren-
theses and supports the operations findclose, findopen, enclose, and insertion and
deletion of a pair of matching parentheses.

We divide the sequence into chunks of size `w bits, and construct a B-tree with
branching factor b, for some parameters ` and b to be chosen later. The i-th leaf
of the B-tree maintains the i-th chunk from left to right. So, the number of leaves
is 2m/`w, the number of internal nodes is O(2m/`wb), and the height of the tree
is O(lgbm).

At each internal node u, seven arrays are maintained where each array con-
tains b numbers of size O(lgm) bits. The i-th item of these seven arrays stores the
following information about the parenthesis chunks located in the i-th subtree of
u (numbers refer to each of the seven arrays): 1) the number of parentheses, 2)
the number of unmatched close parentheses, 3) the number of unmatched open
parentheses, 4) the number of unmatched close parentheses whose matching paren-
theses are located in a subtree rooted at some other child of u, 5) the number of
unmatched open parentheses whose matching parentheses are located in a subtree
rooted at some other child of u, 6) the number of unmatched close parentheses
whose matching parentheses are located outside the subtree, 7) the number of
unmatched open parentheses whose matching parentheses are located outside the
subtree. These seven array are used to perform the parenthesis operations. The
size of each array is O(b lgm) bits. Each array is represented by a searchable partial
sums data structure.

It has been shown that all the parenthesis operations and updates on the input
sequence can be performed by following appropriate root-to-leaf paths in the B-tree

Succinct Dynamic Cardinal Trees 25

and using or updating the chunks at the leaves and the seven arrays at the internal
nodes [9]. The running times of the operations are affected by the following: 1)
the height of the tree O(lgbm) since each operation takes a root to leaf path, 2)
the size of each chunk which is `w bits and thus insertion and deletion take O(`)
time, and 3) the running time of the operations of the searchable partial sums data
structure denoted by t. Therefore, the total running time will be O(lgbm+ `+ t).

The total space of the data structure is 2m bits for storing all the chunks
plus O(2m/`wb · s) bits for storing searchable partial sums data structures of size
O(s) bits for the seven arrays at each internal node. Therefore, the total space is
2m+O(2m/`wb · s) bits.

For the case where m = n, a result was achieved in [9] by doing the following:
1) choosing ` from the range [lg n/ lg lgn . . . 2 lg n/ lg lg n], 2) choosing b from the
range [

√
lg n/2 . . .

√
lg n], and 3) using a searchable partial sums structure from

[31], which supports operations in t = O(1) time using s = O(b lgm) bits for each
internal node besides extra precomputed tables of size o(n) bits. The following
lemma states this result:

Lemma 8 ([9]) A sequence of n pairs of balanced parentheses can be maintained in

a data structure of size 2n + o(n) bits that supports findclose, findopen, enclose, and

insertion/deletion of a pair of matching parentheses in O(lg n/ lg lgn) time.

We obtain a result for the case where m = polylog(n). For this data structure,
we also use the searchable partial sums structure of [31]; we chose ` from the range

[
√

lg n . . . 2
√

lg n]; and we chose b from the range [lg1/4 n . . . 2 lg1/4 n]. In order to
improve the running time of the parentheses operations and updates to O(1), we
store each of the chunks in a dynamic array of Lemma 2. This dynamic array allows
us to access, insert, or delete a parenthesis at a given index of a chunk in O(1)
time (amortized for updates) using a precomputed table of size o(n) bits. This is an
improvement over the data structure of [9] which inserts and deletes at each chunk
in O(`) time. Although this improvement comes at the cost of increasing the space
of representing each chunk from `w bits to `w + O(` lg `) bits, this only increases
the total space by a negligible amount: 2m/`w(`w+O(` lg `)) + o(m) = 2m+ o(m)
bits. The following lemma states our result:

Lemma 9 A sequence of m pairs of balanced parentheses, where m = polylog(n), can

be maintained in a data structure of size 2m+ o(m) bits which supports the operations

rank, select, findclose, findopen, and enclose in O(1) time, and can insert and delete a

pair of matching parentheses at a given location in O(1) amortized time. The structure

assumes access to precomputed tables of size o(n) bits.

Proof The data structure is the one described above except for the operations rank

and select. For these two operations, we add another array to the seven arrays
stored at each internal node u of the B-tree. This array also maintains b items,
where the i-th item is the number of open parentheses in the chunks that are
descendants of the i-th child of u. This array is also represented by the searchable
partial sums data structure of [31] which allows to support rank and select in
constant time. ut

26 Diego Arroyuelo et al.

5.3.2 Edge Labels of Micro Trees

Let Lτ be the sequence containing all the edge labels of τ , in the same order as in
Section 2.5. To perform label-child(x, α) on τ , we find the rank i of α among all the
edge labels between the current node and its children, and then we use child(x, i)
to find the required child. To find i, we find the number of occurrences of α before
the current node, and then find the position of the next occurrence of α using a
rank/select data structure on both Dτ and Lτ . To perform insert-leaf(x, α), we again
need to find i to simply insert the label. But finding i if there is no α among all
the edge labels needs more information. To support this, we construct a dynamic
predecessor structure for all the edge labels below each internal node.

Note that Lτ consists of contiguous sub-sequences si, for i = 1, . . . , Iτ , such that
si represents all the labels below the i-th internal node of τ in preorder, where Iτ
is the number of internal nodes in τ . Note also that |si| 6 k. We construct the
following: (1) a data structure that supports the operations rank, select, insertions
and deletions on Lτ , (2) a data structure for each si, if |si| > lg n/ lg lgn, which
supports the operations predecessor, insertions and deletions on si. In the following,
we explain these two structures, and then we combine them.

Dynamic rank/select Data Structure In the following lemma, we present a data
structure which is used to perform label-child(x, α) in a micro tree.

Lemma 10 There exists a dynamic representation of size m lg k+ o(m lg k) bits for a

sequence L of m symbols from an alphabet of size k using precomputed tables of size o(n)
bits, where m and k are (lg n)O(1). This data structure supports the operations rank and

select in O(1) time, and supports inserting and deleting symbols at arbitrary positions

in the sequence in O(1) amortized time. The structure assumes access to precomputed

tables of size o(n) bits.

Proof There exists a static data structure that supports the operations rank and
select in O(1) time for an alphabet of size k, using a multi-ary wavelet tree with
O(1) height (Theorem 3.2 of [16]). We dynamize their structure in the following
way. We set the branching factor of their wavelet tree to be k′ =

√
lg n. At each

internal node we use a dynamic rank/select data structure for an alphabet of size k′.
In the following, we explain this data structure. Note that the update operations
do not change the structure of the wavelet tree, and thus only the internal node
structures should be dynamized.

We pack every ` symbols of the sequence into a chunk of size ` lg k′ bits, where
` = (w/ lg k′) lg1/4 n. Each chunk is represented by a dynamic array of size ` lg k′+

O(lg1/4 n lg `) bits, which allows us to access, insert, or delete a symbol at a given
index in O(1) time (amortized for updates) using a precomputed table of size o(n)
bits (see Lemma 2). Therefore, the total space used for the chunks is m lg k′ +
o(m lg k′) bits.

Now, we make a B-tree with branching factor lg
1
4 n. Each leaf of the B-tree

stores a pointer to a sub-chunk of size w bits in one of the chunks such that
scanning the sub-chunks of the leaves from the left to right in the B-tree gives
the original sequence. Therefore, each chunk corresponds to lg1/4 n leaves. The
number of leaves is m/(` lg1/4 n) and the depth of the B-tree is O(1). At each

internal node u, we maintain k′+1 arrays, each of length lg1/4 n. One of the arrays

Succinct Dynamic Cardinal Trees 27

is denoted by S. The i-th element of the array S maintains the number of symbols
in the sub-chunks that are descendants of the i-th child of u. Each of the other k′

arrays is for a symbol in the alphabet, and its i-th element maintains the number of
occurrences of the corresponding symbol in the leaves that are descendants of the
i-th child of u. We represent each of these arrays by a searchable-partial-sum data
structure with O(1) time for the partial sums operations, using a precomputed

table of size o(n) bits, since the arrays are small (i.e., O(lg
1
4 n · lg lgn) bits).

To perform the operation rankα(L, i), we traverse the B-tree top-down starting
from the root. Let h be the sub-chunk containing the i-th symbol of the original
sequence. At each internal node u, we count the number of occurrences of α in the
sub-chunks that are to the left of h, and are descendants of u. This counting can be
performed in O(1) time, using the partial sums structures that are constructed for
the array S and the array corresponding to α. At the leaf level, where we should
perform rank in a sub-chunk of size w bits, we read the sub-chunk in O(1) time
and perform the rank using precomputed tables. The operation selectα(L, j) can
be performed similarly in O(1) time (array S is not required for select).

For insertions and deletions in L we perform them on the appropriate chunks
in O(1) amortized time (with the support of the dynamic arrays), and then we
update the nodes of the B-tree along the appropriate path in a straightforward
manner. Therefore, the total update time is O(1) amortized. ut

Dynamic Predecessor. In the following lemma, we present a structure to find the
rank of α among its siblings, used in insert-leaf(x, α).

Lemma 11 There exists a dynamic predecessor data structure for a sorted array of m

elements, where m = (lg n)O(1) and each element is from the range [0 . . . k − 1], that

uses o(m) additional bits. Assuming access to a precomputed table of size o(n) bits, this

data structure supports the operation predecessor in O(1) time, and supports insertions

and deletions in O(1) amortized time.

Proof For this structure, we use the same packing strategy and dynamic arrays as
we used in the proof of Lemma 10. We make a B-tree with branching factor b, where
b =

√
lg n. Each leaf maintains b elements from the array, such that concatenating

the leaves from left to right, gives the original array. The height of the tree is
O(1). At each internal node, we maintain b guiding indexes. Every node (including
leaves) has b lg k = o(lg n) bits which can be handled using a precomputed table of
size o(n) bits. To perform the operations, we traverse the tree top-down in O(1)
time. For the update operations, we also update the internal nodes in a bottom-up
traversal. The rebalancing is applied as needed. ut

The following lemma combines Lemma 10 and Lemma 11, and shows how to
perform the operation child(x, α) on τ using the data structures for Dτ and Lτ .

Lemma 12 For a k-ary cardinal tree τ of at most k2 lg2 n nodes, for k = (lg n)O(1),

there exists a dynamic representation of size 2|τ |+ |τ | lg k+o(|τ | lg k) bits that supports

the operation label-childτ in O(1) time, and supports the update operations insert-leafτ
and delete-leafτ in O(1) amortized time. The structure uses precomputed tables of

size o(n) bits.

Proof As in Section 4, we represent the tree τ with Dτ and Lτ . We construct a
data structure for each of Dτ and Lτ using Lemmas 7, 10, and 11 using a total
of 2|τ |+ |τ | lg k + o(|τ | lg k) bits. ut

28 Diego Arroyuelo et al.

5.4 Boundaries of Micro Trees

While supporting the operations on a micro tree τ , we need to check whether the
current node is a boundary node of τ or not. In case it is a boundary node, we
may need to move the current node to the corresponding adjacent micro tree by
following a pointer to the child micro tree . To efficiently check whether a node is a
boundary node, we store the boundary nodes of τ in an array Bτ of nf (τ) elements.
The representation of pointers is explained in Section 5.5. The i-th element of the
array Bτ contains the difference between two preorder numbers which belong to
the i-th and (i+ 1)-st boundary nodes of τ in the preorder traversal of τ .

We represent Bτ using a searchable partial sums structure. Raman et al. [31]
gave a data structure that solves the problem (to represent m r-bit integers) for
m = wε and r 6 w, for any fixed 0 6 ε < 1. Their data structure achieves O(1)
time for operations Sum, Update, and Search, and uses O(mw) bits of space. We
show that when both m and r are O(wc), for any constant c > 0, we can obtain a
data structure with O(1) time for all the operations, using m lg r + o(m lg r) bits
of space.

Lemma 13 For any integer n < 2w, there exists a searchable-partial-sum data struc-

ture to represent an array A[1..m] whose elements are in the range [0..r − 1], using

m lg r+ o(m lg r) bits, where m and r are (lg n)O(1). This data structure supports the

operations Sum, Update, and Search in O(1) time, assuming access to precomputed

tables of size o(n) bits.

Proof We pack every w/ lg r elements of the array into a word. Within each word,

every b numbers denote a chunk, where b = lg1/4 n. Within each chunk, the oper-
ations can be supported in O(1) time using a precomputed table of size o(n) bits.
The space usage to store all the chunks is m lg r + o(m lg r) bits.

Now, we make a B-tree with branching factor at most b. Each leaf of the B-tree
stores a pointer to one of the chunks such that scanning the chunks of the leaves
from left to right in the B-tree gives the original array. The number of leaves is
m/b and the depth of the B-tree is O(1). At each internal node u, we maintain
two arrays of length b. The i-th element of the first array maintains the sum of
all the elements in the chunks that are descendants of the i-th child of u. The
i-th element of the second array maintains the number of all the elements in the
chunks that are descendants of the i-th child of u. The operations on these two
arrays can be supported in O(1) time, using a precomputed table of size o(n) bits.
Since the number of internal nodes is O(m/b2), the space usage for the B-tree is
O((m/b2) · (b(lg r + lgm))) = o(m lg r) bits.

The operations on the input array can be carried out by traversing the tree
top-down and computing the operations at the internal nodes in O(1) time. ut

Since each element of Bτ takes O(lg |τ |) bits, the searchable partial sums data
structure takes nf (τ) lg |τ | + o(nf (τ) lg |τ |) bits. Thus the overall space for all the
micro trees is o(n) bits. To check whether the current node is a boundary node or
not, we use Search on Bτ for the preorder number of the current node.

Succinct Dynamic Cardinal Trees 29

5.5 Pointers Between Adjacent Micro Trees

There are two cases where we need to traverse from the micro tree τ containing
the current node x, to an adjacent micro tree: (1) if x is a boundary node of τ ,
and we need to follow a pointer to the micro tree rooted at x, and (2) if x is the
root of τ , and we need to follow a pointer to move to the parent micro tree of τ .

In the first case, for each boundary node x of τ , we store a pointer to the micro
tree rooted at x. These pointers are represented in the following way. Let τi be the
micro tree rooted at Bτ [i], the i-th boundary node of τ . We make an array PTRτ of
nf (τ) elements such that PTRτ [i] maintains a pointer to τi. Therefore, whenever the
current node is Bτ [i] (we can check this using the representation of Section 5.4),
we can traverse to the root of the micro tree τi. The space usage to store PTRτ for
all the micro trees is o(n) bits. For parent pointers, we use the same approach as
in Section 4.8.2.

5.6 Satellite Data

Similar to Section 4.7, we store all the b-bit data associated to the nodes of each
micro tree in a dynamic array, where the location of the data associated with each
node is determined by the the preorder number of the node in the corresponding
micro tree. The number of dynamic arrays is equal to the number of micro trees;
the length of each dynamic array is equal to the size of each micro tree which is
(lg n)O(1); and the size of the data associated to each node is b = O(lg n) bits.

We utilize the dynamic array of Lemma 2 which maintains an array of length
wO(1) containing O(w)-bit elements. For a micro tree τ , this lemma implies a data
structure of size b|τ |+O(kτ lg lg n) bits with O(1) query time and O(|τ |/kτ) amor-
tized update time, where kτ 6 |τ | is a parameter. By setting kτ = c|τ | lg lgn/lg n
for small enough constant c, we obtain a data structure of size bn + o(n) bits in
total, with O(1) query time and O(lg n/ lg lg n) amortized update time (similar to
Section 4.7). Moreover, we can also obtain another trade-off by setting k|τ | = c|τ |,
for small enough constant c, to achieve O(1) query time and O(1) amortized update
time using bn+O(n lg lgn) bits.

5.7 Supporting Tree Operations

5.7.1 Subtree Sizes

We construct a data structure that allows us to compute the subtree size of the
current node in O(1) time. Let τ be the micro tree containing the current node.
Lemma 7 shows that we can perform subtree-size on the current node within τ in
O(1) time. But, to this number, we should add the subtree sizes of the roots of all
the child micro trees of τ that are descendants of the current node (similar to the
algorithm described in Section 4.8.4). For this, we make an array Sizeτ of length
nf (τ) such that Sizeτ [i] maintains the subtree size of the root of τi, where τi is the
child micro tree rooted at the i-th boundary node of τ in the preorder traversal of
τ . We represent Sizeτ by a searchable-partial-sum data structure using nf (τ) lg n+
o(nf (τ) lg n) bits (see Lemma 13). The overall space for all the micro trees is o(n)

30 Diego Arroyuelo et al.

bits. To compute the subtree size, we need to find
∑jr
i=j`

Sizeτ [i], where τ , τj` and
τjr are the left-most and right-most child micro trees of τ , respectively, that are
descendants of the current node. To find τj` , we do a predecessor search in the
array Bτ for the preorder number of the current node. Let e be the left-most leaf
of τ that is also a descendant of the current node. To find τjr , we first find the
preorder number of e within τ by adding the preorder number of the current node
and its subtree size within τ . Then we do a predecessor search in the array Bτ for
the preorder number of e.

5.7.2 Operation insert-leaf(x, α)

To perform insert-leaf(x, α) in a micro tree τ , we update the representation of τ in
the following way. We update Dτ by inserting a pair of matching parentheses as in
Section 3.4, using the rank i of the new symbol α. In order to compute i, we use
the predecessor search structure that we make for each contiguous sub-sequence of
Lτ (see Section 5.3.2). First we find the sub-sequence in Lτ that contains the edge-
labels of the node x using the preorder number of x within τ . We then perform a
predecessor search for α within the found sub-sequence to determine i. We update
Lτ by inserting α into Lτ at position i. The new leaf is not a boundary node, but if
it is inserted between two boundary nodes, then it changes the difference between
their preorder numbers. Therefore, we increment the appropriate element of Bτ .
All the above operations can be performed in O(1) time.

If |τ | exceeds the value of k2 lg2 n (i.e., the micro tree τ overflows), we split
τ into several micro trees whose sizes are in the range [2 lg2 n . . . 2k lg2 n] using
the decomposition algorithm that we used in Section 5.1. Then we reconstruct
the representation of each new micro tree. This can be performed by inserting
leaves one by one into the new micro trees. The split and the construction of
micro tree representations can both be performed in O(|τ |) = O(k2 lg2 n) time.
Since this procedure makes micro trees of small enough size (at most 2k lg2 n),
therefore, O(k2 lg2 n) number of insert-leaf operations are required to make any of
them full, and hence the insertion time is O(1) amortized.

5.7.3 Operation delete-leaf

To perform delete-leaf(x, α) in a micro tree τ , we update the representation of τ
similar to the algorithm for insert-leaf(x, α). If |τ | becomes smaller than lg2 n, then
we combine τ with its parent micro tree τ ′. This can be performed by inserting
the nodes of τ in preorder into τ ′ using a total of lg2 n insert-leaf operations, which
takes O(|τ |) = O(lg2 n) time. In the amortized analysis, we charge the cost of each
of these insert-leaf to a delete-leaf that will occur in τ ′ later on. This increases the
amortized cost of delete-leaf by only a constant factor.

5.7.4 Memory Management

We store each micro tree in a separate location of the memory using an extendible
array [8]. Since the number of micro trees is at most n/ lg2 n, and the nominal size
of all the micro trees is s = 2n+ n lg k+ o(n lg k) bits, then the space requirement

for the whole collection of micro trees is s + O(nw/ lg2 n +
√
snw/ lg2 n) = 2n +

n lg k + o(n lg k) bits [34].

Succinct Dynamic Cardinal Trees 31

5.8 The Overall Result for k = O(polylog(n))

The following theorem states our result for small-alphabet dynamic cardinal trees.

Theorem 3 There exists a representation for dynamic cardinal k-ary trees of n nodes

using 2n+ n lg k + o(n lg k) bits of space, where k = (lg n)O(1), supporting operations

parent, child, label-child, child-rank, label, degree, subtree-size, preorder, and ancestor,

all in O(1) worst-case time. Operations insert-leaf and delete-leaf are supported in O(1)
amortized time. If b-bit satellite data is associated with the tree nodes, for b = O(lg n),

we provide the following trade-offs:

1. bn + o(n) extra bits of space, operation access-data in O(1) time, and operation

change-data in O(lg n/ lg lgn) amortized time;

2. bn+O(n lg lgn) extra bits of space, operation access-data in O(1) time, and oper-

ation change-data in O(1) amortized time; and

3. bn + o(n) extra bits of space, operations access-data and operation change-data in

O(lg lgn/ lg lg lg n) amortized time.

The space and time bounds are valid in the standard model MB of memory allocation.

6 Succinct Dynamic Binary Trees

We now use the machinery we have developed in the previous sections to obtain
improved succinct representations for dynamic binary trees [28,33,13].

We represent a binary tree Tb of n nodes using the following bijection between
Tb and a corresponding ordinal tree To [27]. We define To with n+ 1 nodes, such
that each node x of Tb corresponds to a node t(x) in To, except for a dummy root
that we must add to To. The root of Tb corresponds to the first (and only) child of
the dummy root of To. The left child of node x in Tb corresponds to the first child
of t(x) in To, and the right child of node x in Tb corresponds to the next sibling
of t(x) in To. Since ordinal trees can be represented using balanced parentheses,
this representation of binary trees uses 2n + o(n) bits, as desired. Navigational
operations on Tb are supported by balanced-parenthesis operations on To in O(1)
time.

We dynamically divide the binary tree into micro trees as in Section 5. Each
micro tree τ having nf (τ) child micro trees is represented by a 6-tuple 〈Dτ , PTRτ , Bτ ,
Sizeτ , Dataτ , pτ 〉. These have the same meaning as in Sections 4 and 5, except Dτ ,
which now is the ordinal-tree representation of the binary micro tree. We use the
representation of Lemma 9 for Dτ , to support the ordinal-tree operations in O(1)
time. Then, each binary-tree operation can be simulated as follows:

– Operation left-child(x) in Tb is computed as first-child(t(x)) in To.
– Operation right-child(x) in Tb is computed as next-sibling(t(x)) in To.
– Operation parent(x) in Tb is computed according to the following two cases:

if t(x) is the first child of its parent in To, then we use parent(t(x)) in To;
otherwise, we use prev-sibling(t(x)) in To.

– Operation subtree-size(x) in Tb is computed adding subtree-size(t(x)) (which cor-
responds to the subtree of the left child of x in Tb, plus x itself) plus the size of
the subtrees of all siblings to the right of t(x) in To (which correspond to the

32 Diego Arroyuelo et al.

subtree of the right child of x in Tb). Let ` be the rightmost leaf in the sub-
tree of node parent(t(x)) in To. Hence, preorder(t(x)) − preorder(`) in T0 equals
subtree-size(x) in Tb.

– Operations preorder and ancestor are carried out as in Sections 4 and 5.
– Operations insert-leaf and delete-leaf are carried out inserting/deleting a ‘()’ at

the corresponding position in To.
– Finally, satellite data can be supported as in Section 5.

Since the balanced-parentheses operations within the mini trees are supported
in O(1) time (see Lemma 9), and each binary-tree operation can be simulated
with O(1) balanced-parentheses operations, and the navigation between adjacent
micro-trees can be also supported in O(1) time as in Section 5, we have proved:

Theorem 4 There exists a representation for dynamic binary trees of n nodes us-

ing 2n + o(n) bits of space and supporting operations parent, left-child, right-child,

subtree-size, preorder, and ancestor, all in O(1) worst-case time. Operations insert-leaf

and delete-leaf are supported in O(1) amortized time. If b-bit satellite data is associated

with the tree nodes, for b = O(lg n), we provide the following trade-offs:

1. bn + o(n) extra bits of space, operation access-data in O(1) time, and operation

change-data in O(lg n/ lg lgn) amortized time;

2. bn+O(n lg lgn) extra bits of space, operation access-data in O(1) time, and oper-

ation change-data in O(1) amortized time; and

3. bn + o(n) extra bits of space, operations access-data and operation change-data in

O(lg lgn/ lg lg lg n) amortized time.

The space and time bounds are valid in the standard model MB of memory allocation.

7 Conclusions and Future Work

Succinct data structures have become crucial to store and manage big amounts
of data in many applications. Specially, succinct dynamic data structures have
particular importance, as they also allow efficient updates. In this paper, we have
introduced succinct representation for dynamic k-ary cardinal trees (or tries) on n

nodes. These are fundamental data structures for text-processing algorithms. Our
cardinal tree representations require 2n + n lg k + o(n lg k) bits of space, which is
close to C(n, k) ≈ n(lg k + lg e) + o(n + lg k), the lower bound for representing a
k-ary cardinal tree on n nodes.

Ours are the first dynamic cardinal tree representations that support a com-
plete set of operations, while using almost optimal space. For k = O(polylog(n)),
we support navigation and query operations on the tree in O(1) worst-case time,
whereas insertions and deletions of tree leaves are supported in O(1) amortized
time. For k = ω(polylog(n)) (and O(n)), we show that the same set of opera-
tions can be supported in O(lg k/ lg lg k) time (amortized in the case of inser-
tions/deletions). Our data structures are also able to associate b-bit satellite data
to the tree nodes, providing several space/time trade-offs for space usage and
accessing/modifying the data.

We also showed that dynamic binary trees on n nodes can be represented using
2n + o(n) bits of space, so that the tree operations are supported in O(1) time
(amortized in the case of insert/delete operations). We support adding satellite

Succinct Dynamic Cardinal Trees 33

data to the tree nodes using bn+o(n) extra bits (versus bn+o(bn) extra bits of the
fastest previous dynamic representation from the literature [13]), while providing
several trade-offs for accessing/modifying the data.

After our work, we identify the following lines for future research:

– Currently, our data structures for dynamic k-ary cardinal trees use Θ(n) +
o(n lg k) bits on top of the lower bound C(n, k). An interesting open question is
whether we can reduce the extra space to just o(n) bits or not, as in the static
case [32,14].

– For dynamic binary trees, would it be possible to support all tree operations
in O(1) time (amortized for insertions and deletions) just as in [13], yet using
only bn + o(n) extra bits of space for b-bit satellite data, as achieved by our
data structure? Currently, we support all binary tree operations in constant
time, except for access-data and change-data.

– Would it be possible for our data structures to support insertions and deletions
in worst-case time, rather than amortized?

– Would it be possible for our data structures to support a richer set of opera-
tions, as for instance level-ancestor [5] and lowest-common-ancestor [6] queries?

References

1. A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words, NATO ISI Series, pages 85–96. Springer-Verlag, 1985.

2. D. Arroyuelo. An improved succinct representation for dynamic k-ary trees. In Proc. of
19th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 5029 of
Lecture Notes in Computer Science, pages 277–289. Springer, 2008.

3. D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice. In
Proc. of 11th Workshop on Algorithm Engineering and Experiments (ALENEX), pages
84–97. SIAM, 2010.

4. D. Arroyuelo and G. Navarro. Space-efficient construction of Lempel-Ziv compressed text
indexes. Information and Computation, 209(7):1070–1102, 2011.

5. M. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoretical
Computer Science, 321(1):5–12, 2004.

6. M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common
ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.

7. D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005.

8. A. Brodnik, S. Carlsson, E. Demaine, J. I. Munro, and R. Sedgewick. Resizable arrays in
optimal time and space. In Proc. of 6th International Workshop on Algorithms and Data
Structures (WADS), volume 1663 of Lecture Notes in Computer Science, pages 37–48.
Springer, 1999.

9. H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for dynamic
text collections. ACM Transactions on Algorithms, 3(2):article 21, 2007.

10. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3rd. ed.). MIT Press, 2009.

11. J. Darragh, J. Cleary, and I. Witten. Bonsai: a compact representation of trees. Software
- Practice and Experience, 23(3):277–291, 1993.

12. P. Davoodi and S. S. Rao. Succinct dynamic cardinal trees with constant time operations
for small alphabet. In Proc. of 8th Annual Conference on Theory and Applications of
Models of Computation (TAMC), volume 6648 of Lecture Notes in Computer Science,
pages 195–205. Springer, 2011.

13. A. Farzan and J. I. Munro. Succinct representation of dynamic trees. Theoretical Computer
Science, 412:2668–2678, 2011.

14. A. Farzan, R. Raman, and S. S. Rao. Universal succinct representations of trees?
In Proc. of 36th International Colloquium on Automata, Languages and Programming
(ICALP), volume 5555 of Lecture Notes in Computer Science, pages 451–462. Springer,
2009.

34 Diego Arroyuelo et al.

15. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and indexing
labeled trees, with applications. Journal of the ACM, 57(1), 2009.

16. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.

17. M. L. Fredman. The complexity of maintaining an array and computing its partial sums.
Journal of the ACM, 29(1):250–260, 1982.

18. R. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries.
ACM Transactions on Algorithms, 2(4):510–534, 2006.

19. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics - a foundation for
Computer Science. Addison-Wesley, 2nd edition, 1994.

20. W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for searchable partial
sums with optimal worst-case performance. Theoretical Computer Science, 412(39):5176–
5186, 2011.

21. G. Jacobson. Space-efficient static trees and graphs. In Proc. of 30th Annual Symposium
on Foundations of Computer Science (FOCS), pages 549–554. IEEE Computer Society,
1989.

22. J. Jansson, K. Sadakane, and W.-K. Sung. Linked dynamic tries with applications to
LZ-compression in sublinear time and space. Algorithmica, 2013. To appear.

23. J. Jansson, K. Sadakane, and W.-K.Sung. Ultra-succinct representation of ordered trees
with applications. Journal of Computer and System Sciences, 78(2):619–631, 2012.

24. S. Joannou and R. Raman. Dynamizing succinct tree representations. In Proc. 11th
International Symposium on Experimental Algorithms (SEA), volume 7276 of Lecture
Notes in Computer Science, pages 224–235. Springer, 2012.

25. H.-I Lu and C.-C. Yeh. Balanced parentheses strike back. ACM Transactions on Algo-
rithms, 4(3):28:1–28:13, 2008.

26. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

27. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

28. J. I. Munro, V. Raman, and A. J. Storm. Representing dynamic binary trees succinctly.
In Proc. of 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
529–536. ACM/SIAM, 2001.

29. G. Navarro and Y. Nekrich. Optimal dynamic sequence representations. SIAM Journal
on Computing, 43(5):1781–1806, 2014.

30. G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees. ACM
Transactions on Algorithms, 10(3):article 16, 2014.

31. R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data structures. In Proc. of
7th International Workshop on Algorithms and Data Structures (WADS), volume 2125
of Lecture Notes in Computer Science, pages 426–437. Springer, 2001.

32. R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4),
2007.

33. R. Raman and S. S. Rao. Succinct dynamic dictionaries and trees. In Proc. of 30th
International Colloquium on Automata, Languages and Programming (ICALP), volume
2719 of Leture Notes in Computer Science, pages 357–368. Springer, 2003.

34. R. Raman and S. S. Rao. Succinct dynamic dictionaries and trees. Manuscript, 2008.

