
Efficient Communication Protocols for Deciding Edit

Distance ∗

Hossein Jowhari

MADALGO, University of Aarhus
hjowhari@madalgo.au.dk

Abstract

In this paper we present two communication protocols on computing edit dis-
tance. In our first result, we give a one-way protocol for the following Document
Exchange problem. Namely given x ∈ Σn to Alice and y ∈ Σn to Bob and integer
k to both, Alice sends a message to Bob so that he learns x or truthfully reports
that the edit distance between x and y is greater than k. For this problem, we give
a randomized protocol in which Alice transmits at most Õ(k log2 n) bits and each
party’s time complexity is Õ(n log n+ k2 log2 n).

Our second result is a simultaneous protocol for edit distance over permuta-
tions. Here Alice and Bob both send a message to a third party (the referee) who
does not have access to the input strings. Given the messages, the referee decides
if the edit distance between x and y is at most k or not. For this problem we
give a protocol in which Alice and Bob run a O(n log n)-time algorithm and they
transmit at most Õ(k log2 n) bits. The running time of the referee is bounded
by Õ(k2 log2 n). To our knowledge, this result is the first upper bound for this
problem.

Our results are obtained through mapping strings to the Hamming cube. For
this, we use the Locally Consistent Parsing method of [5, 6] in combination with
the Karp-Rabin fingerprints. In addition to yielding non-trivial bounds for the
edit distance problem, this paper suggest a new conceptual framework and raises
new questions regarding the embeddability of edit distance into the Hamming cube
which might be of independent interest.

1 Introduction

For integers m and n, let ed(x, y) denote the standard edit distance between two strings
x and y from the alphabet [m] = {1, . . . ,m} where it is defined as the minimum number
of substitutions, insertions and deletions of characters that is required to convert x to
y. In this paper, we also consider two variants of this metric. The Ulam metric is a
submetric of edit distance restricted to sequences with no character repetitions. The
edit distance with moves [5, 6], denoted by edM (x, y), is defined similar to ed(x, y) with
addition of a block move operation. Namely moving the entire substring x[i, j] to any
location is considered a single operation. To simplify the presentation, throughout this

∗Part of this research was done while the author was a visiting student at MIT.

1

paper we assume the alphabet size m is O(nc) constant c, otherwise we can always use
random hashing to make this happen.

Edit distance has been studied in various computational and mathematical models.
In this paper we focus on computing edit distance in the context of two communica-
tion models. In the first problem, here denoted by DEk and known as the Document
Exchange problem [6], there are two communicating parties Alice and Bob respectively
holding input strings x and y. We are interested in a one-way communication protocol
where Alice sends a message to Bob and Bob either learns x or truthfully reports that
ed(x, y) > k. Here in this paper, in addition to optimizing the total number of transmit-
ted bits, we are interested in protocols where Alice and Bob both run poly(k, n)-time
algorithms.

Protocols for the document exchange problem are of considerable practical impor-
tance in communicating data over noisy channels. Consider the following recurring
scenario where A transmits a large file x to B over an unreliable link with possible er-
rors of insertion, deletion and substitution of bits. Roughly speaking, using a protocol
for the above problem, A can supplement his message with A(x) and avoid retransmis-
sions in the case of small amount of corruption. In a similar situation, these protocols
are useful for minimizing communication in the consolidation of distributed data sites.
For instance, instead of transmitting their repository, coordinated servers can instead
exchange their differences through a document exchange protocol.

For the DEk problem, we give a communication protocol that transmits Õ(k log2 n)
bits while Alice and Bob’s running time is bounded by Õ(n log n + k2 log2 n). To our
knowledge this is the first time-efficient 1-way protocol for this problem 1.

In the second problem, denoted by ED↑k,k+1, we are interested in sketching protocols
for deciding edit distance. Namely, we would like to have an efficiently computable
mapping hk : X → {0, 1}t with t = poly(k, log n), such that having access to only
hk(x) and hk(y), there is an efficient algorithm that decides if d(x, y) ≤ k or not.
Equivalently, defined in terms of the simultaneous protocols [11], Alice holds x, and
Bob holds y but they are only allowed to send one message to a third party named the
Referee whose duty is to decide ed(x, y) ≤ k without any access to the input strings.
Likewise here we are interested in protocols that run time-efficient computations. In
this problem (and in DEk as well), we assume the communicating parties have access
to a shared source of randomness.

The sketching protocols in addition to their application in data communication,
have implications in classification and data structures for Nearest Neighbour search.
In particular consider a scenario where we would like to find two strings with edit
distance bounded by k in a collection of m strings. Using a sketching protocol for the
above problem, one can first build sketches of the strings and then compare the short
sketches instead of running an edit distance algorithm over long strings.

For the problem of ED↑k,k+1 restricted to non-repeating strings, we give a protocol

that transmits at most Õ(k log2 n) bits. The running time of all communicating par-
ties is bounded by Õ(k2 log2 n). Unfortunately our method does not yield an upper
bound for standard edit distance. It remains an open problem whether there exists a

1In fact a time-efficient 1-way protocol that transmits O(k log k log(n/k)) bits can inferred from the
work of Irmak et al. [9] which uses a different method. The author was not aware of this result in time
of the submission of this paper.

2

simultaneous protocol for deciding edit distance over general strings.

Previous and Related Works. Also known as the Remote File Synchronization
[9], the Document Exchange problem DEk has been studied extensively by Cormode
et al. [6]. Conditioning on ed(x, y) ≤ k, it has been shown there is a deterministic one-
way protocol for DEk, resulting from the graph coloring method of [14], that transmits
only O(k log n) bits. However in this protocol, Bob’s running time is exponential in k.
Similarly in a randomized protocol for this problem, Alice builds a random hash h(x)
and send it to Bob. Bob, using the same source of randomness, compares h(x) with
the hash value of all the strings within distance k from y. If he finds a match, x has
been learned otherwise he can declare that ed(x, y) > k. It can be shown that random
hashes of O(k log n) bit length are enough so that Bob succeeds with high probability.
Once again Bob’s running time will be exponential in k as he should try nO(k) number
of strings.

However if Alice and Bob are allowed to use a multi-round protocol there is a
time-efficient protocol. In [6] Cormode et al have given a time-efficient solution that
transmits O(k log(n/k) log k) bits in total and runs in O(log n) rounds. This protocols
works through recursively dividing the string into O(k) blocks and detecting the dif-
ferences through comparing the fingerprints of each block. Building on similar ideas,
Irmak et al. [9] have a shown a single round O(k log(n/k) log n) protocol for the docu-
ment exchange problem under edit distance with moves.

To our knowledge, prior to our work, there was no non-trivial upper bound on the
sketching complexity of deciding edit distance. This was even true assuming computa-
tionally unbounded communicating parties. On the lower bound side, it is known that
any protocol for DEk needs to transmit Ω(k) bits. This follows from a lower bound
for Hamming distance (see the concluding discussions in [3]) This fact remains true
when Alice and Bob’s inputs are non-repeating strings [8, 17]. Needless to say, this
lower bound also applies to the sketching variant since Bob can take up the role of the
referee.

Considering the Lp metric and in particular the Hamming metric, both the docu-
ment exchange and the sketching problem are fairly well-understood. In fact solutions
for both of these problems can be derived from any exact sparse recovery scheme (see
[7] for an introduction to sparse recovery). Here the Lp differences between x and y can
be inferred from the measurements Ax and Ay. Considering that there are sparse re-
covery matrices with O(k log(n/k)) number of rows, this leads to an O(k log(n/k) log n)
bits bound for our problems. There are however non-linear methods that give better
bounds. In particular for Hamming distance we use the following result in our work.

Lemma 1 [16] Let x and y be two points in [m]n. There exists a randomized mapping
sk : [m]n → {0, 1}O(k logn) such that given sk(x) and sk(y), there is an algorithm that
outputs all the triples {(xi, yi)} satisfying xi 6= yi in O(k log n) time. For l-sparse
vectors x, the sketch sk(x) can be constructed in O(l log n) time and space in one pass.

The best exact algorithm for edit distance runs in O(n2/ log2 n) time [13]. For the
decision version of the problem, there is an algorithm by [12] that runs in O(n + k2)
time. In contrast with little progress over the exact complexity, there is a long sequence
of results on approximating edit distance. The best near-linear time approximation

3

algorithm for edit distance [2] runs in O(n1+ε) time and outputs an O(logO(1/ε) n) ap-
proximation. The sketching complexity of the gap questions regarding edit distance
has been studied directly or implicitly in [4, 3, 1]. In particular [3] gives a O(1)-size
sketch for distinguishing between k versus (kn)2/3. We refer the reader to [2] for a
detailed history on these results.

Techniques and ideas. In this paper we propose the following general framework
that is applicable to all distance functions. Given d : [m]n × [m]n → R+, we design a
mapping f from distance d to Hamming. Formally let f : [m]n → {0, 1}n′ having the
following properties.

1. n′ is bounded by nO(1) and for all x, f(x) can be computed efficiently.

2. There exists 1 ≤ ef << n such that for distinct u and v, we have 0 < H(f(u), f(v)) ≤
efd(u, v) with probability at least 7/8.

3. There is a polynomial time algorithm Rf where given f(x) obtains x exactly with
probability at least 7/8.

Using the mapping f and the reconstruction procedure Rf , we propose the following
protocol. In the beginning, Alice and Bob both compute f(x) and f(y), and then they
run a document exchange protocol under Hamming distance over f(x) and f(y) with
parameter k′ = O(efk) (see Lemma 1). It follows that if d(x, y) ≤ k, Bob will learn f(x)
and subsequently using Rf he reconstructs x. Considering the bounds from Lemma
1, communication complexity of this solution is bounded by O(ef · k · log n) while the
running time depends on the construction time of f(x) and the time complexity of Rf .

We remark that, we do not need to use a mapping with low contraction as apposed
to the standard metric embeddings. As long as distinct strings are mapped to different
vectors and they are efficiently retrievable, the contraction of distances is not impor-
tant. Naturally deriving such mappings is considerably easier in comparison with the
standard low distortion embeddings. In fact, as we see in Section 2, we almost directly
obtain a mapping from the Cormode-Muthukrishnan’s embedding of edit distance with
moves into L1 [5]. This works because edit distance with moves is upper bounded by
edit distance and moreover the expansion factor of its mapping is O(log n log∗ n) which
is considerably better than the existing bounds for edit distance 2. The CM’s embed-
ding is quite efficient. It constructs a parsing tree over the input in near-linear time
and encodes the substrings that are marked in the process into f(x). As we shall see, to
complete the picture we just need to equip our mapping with an efficient reconstruction
procedure.

Roughly speaking, our reconstruction algorithm, having collected the Rabin-Karp
fingerprints of the substrings of x that were obtained from the encoding f(x), it rebuilds
the original parsing tree that was used to create f(x). As we shall see, this can be done
in a fairly straightforward manner. Once the parsing tree is reconstructed the original
string x can be inferred from the labels of the leaves of this tree.

2The best low distortion embedding for edit distance, due to Ostrovsky and Rabani [15], has

2Ω(
√

log n) as both the expansion and contraction factor.

4

In our sketching result for deciding Ulam, similar to the solution of the document
exchange, Alice and Bob use the mapping f to create f(x) and f(y). Granted ed(x, y)
is bounded, the referee will learn f(x) − f(y) and from this difference he will be able
to construct partial parsing trees corresponding to x and y. It will be shown that the
partial trees are enough to decide if ed(x, y) ≤ k or not. This last step of deciding the
edit distance from partial recovery of x and y relies on the non-repetitiveness of the
input sequences.

2 A 1-way protocol for Document Exchange

Before presenting our solution for edit distance, as a warm-up and along the lines we
described above, we present a simple solution for the Ulam metric. The mapping fU for
Ulam distance is defined as follows. Let π be a non-repeating string. Corresponding
to each pair (i, j) where i, j ∈ Σ, fU (π) has a coordinate. We set fU (π)i,j = 1 if
j appears right after i in π otherwise we set fU (π)i,j = 0. It can be verified easily
that the expansion factor of fU is bounded by a constant (efU ≤ 8). Moreover the
reconstruction procedure RfU is straightforward. This gives us the following lemma.

Lemma 2 There is a one-way protocol for DEk restricted to permutations that trans-
mits O(k log n) bits and its running time is bounded by O(n log n).

To define our mapping for general strings, we use the following result by Cormode
and Muthukrishnan [5].

Lemma 3 There is a mapping g : Σn → [n]l, such that for every pair u, v ∈ Σn, we
have

1

2
edM (u, v) ≤‖ g(u)− g(v) ‖1≤ O(log n log∗ n)edM (u, v).

Moreover the number of non-zero entries in g(u) is bounded by 2n.

Unfortunately the mapping g generates exponentially long vectors, i.e l = 2O(n logm),
and thus it is unsuitable for a direct application. However since the generated vectors
are very sparse, we deploy random hashing to reduce its dimensionality. In the following
we proceed with a brief background on g and then we describe the random hash function
(supplemented with some extra information) that gives us the desired mapping f .
Finally we present the reconstruction algorithm Rf .

The ESP tree. The embedding of [5] uses a procedure called Edit Sensitive Parsing
(ESP) to build a rooted tree Tx = (Vx, E) over the input string x where the leaves of Tx
are the single characters of x. Each node v ∈ Vx represents a unique substring x[i, j].
This means the characters x(i)x(i + 1) . . . x(j) are at leaves of the subtree rooted at
v. See Figure 3 for a pictorial representation. We let s(v) denote the substring that
v represents. Every non-leaf node of Tx has either 2 or 3 children. We introduce the
following notations. We denote the left-hand child of v by vl, the middle child (if exists)
by vm and the right-hand child by vr.

We need the following fact regarding the properties of the ESP tree; its complete
proof can be inferred from the details in [5].

5

Figure 1: A pictorial presentation of a part of an ESP tree.

Lemma 4 The number of structurally distinct subtrees in Tx that represent the same
(but arbitrary) α ∈ Σ∗ is bounded by 2O(log∗ n).

Proof: Let v ∈ Vx and let x[i, j] be the substring represented by v. From the procedure
ESP, we have that the tree rooted at v depends only on the content of a substring x[i′, j′]
where i′ = i−O(1) and j′ = j +O(log∗ n). 2

Given Tx, the vector g(x) is defined as follows. Corresponding to each string α of
length n, g(x) has a coordinate. Let g(x)[α] represent the coordinate corresponding to
α. We set g(x)[α] to be the number of nodes in Tx that represent α. This finishes the
description of g.

Definition of f . We use a linear hash function to map the coordinates of g to
polynomially bounded numbers. For the choice of our hash function we use the classical
Rabin-Karp fingerprinting method [10]. Let q > 4n4 be a prime and r ∈ Z∗q be randomly
selected from [q]. For α ∈ Σ∗, the Rabin-Karp fingerprint of α is defined as Φ(α) =∑|α|

i=1 α[i] · ri−1 (mod q). The following facts are well-known and the reader is referred
to [10] for the proofs.

(F1) Φ(α) can be computed in one pass over α using O(log n) bits of space.

(F2) Let β 6= α be a string of length at most n. Prr[Φ(α) = Φ(β)] ≤ 1
n3 .

(F3) We have Φ(α ◦ β) = Φ(α) + r|α|+1 Φ(β) (mod q) where the arithmetic operations
are done in Zq.

Note 5 Since with high probability there will be no collision between the fingerprint of
different strings, to simplify the presentation, in the rest of this paper we will assume
that is the case.

Now we are ready to introduce f : Σn → [n] × [q]4. Given x ∈ Σn, we set the
coordinates of f(x) as follows. For a non-leaf v ∈ Tx with three children vl, vm and vr,
we set f(x)[|s(v)|,Φ(s(v)),Φ(s(vl)),Φ(s(vm)),Φ(s(vr))] to be the number of subtrees in
Tx that represent s(v) and their root substring is partitioned into three blocks of s(vl),
s(vm) and s(vr). We do the same for the nodes with two children except that we regard
the middle block s(vm) as the empty string with Φ(s(vm)) = 0. For the leaf v ∈ Tx, we
set f(x)[1,Φ(s(v)), 0, 0, 0] to be the number of the occurrences of the character s(v) in
x. The rest of the coordinates in f(x) are set to zero.

6

The Reconstruction Algorithm
Input: f(x), Output: x

Initialization: Let Sx denote the set of non-zero coordinates in f(x), i.e

Sx = { (l, j0, j1, j2, j3) | f(x)[l, j0, j1, j2, j3] 6= 0 }.

Begin with an empty tree T ′x = (V ′, E′). Find v ∈ Sx with l = n and add it to V ′.
Let Sx = Sx/{v}. Note that such a node is unique since there is only one string
with length n. This is going to be the root of T ′x. In the following, abusing the
notation, we let Φ(v) denote the second coordinate of v.

Iteration: Repeat until Sx is empty.

1. Pick an arbitrary leaf v ∈ T ′x which does not correspond to a single character.

2. Given the non-zero fingerprints j1, j2 and j3 corresponding to the children of
v, find the elements in vl, vm and vr in Sx where Φ(vl) = j1, Φ(vm) = j2 and
Φ(vr) = j3. Break the ties arbitrarily.

3. Let Sx = Sx/{vl, vm, vr} and add the excluded elements to T ′x as the children
of v. Note that if j2 = 0, we would only add vl and vr.

Finalization: Counting from left to right, let xi be the character that is repre-
sented by the i-th leaf of T ′x.

Figure 2: Description of the reconstruction algorithm Rf .

Proposition 6 Let u, v ∈ Σn. We have H(f(u), f(v)) ≤ 2O(log∗ n) ‖ g(u)− g(v) ‖1.

Proof: Let Su and Sv be the set of substrings that are represented by the nodes in the
trees Tu and Tv respectively. Assuming the mapping Φ produces distinct values over
Su ∪Sv and by Lemma 4, it follows there are at most 2O(log∗ n) non-zero coordinates in
f corresponding to a substring α. This completes the proof of the lemma. 2

The above proposition and Lemma 3, give us the following bound on the expansion
factor of f .

Corollary 7 ef = O(log n · 2O(log∗ n) · log∗ n).

Reconstruction algorithm Rf . The description of this algorithm is given in Figure
2. Our procedure Rf works by constructing a tree T ′x that has the same sequence of
(labeled) leaves as Tx does and as result we reconstruct x. The tree is constructed in
a top-down fashion starting from the root of Tx and expanding the leaves by finding
the encodings of its children in the vector f(x). We point out that T ′x might not be
structurally equivalent with Tx but it is guaranteed that the leaves are in the same
labeling order.

7

Figure 3: A pictorial presentation of the tree T (VX) shown in black nodes. The curved
area shows the nodes in ΓX .

Theorem 8 There is a randomized one-way protocol for DEk that transmits Õ(k log2 n)
bits and succeeds with high probability. The running time of each party is bounded by
O(n log n+ k2 log2 n).

Proof: (Sketch) The correctness of the result follows from Lemma 1, the general
framework that we introduced in the introduction and the description of the the re-
construction procedure. The running time of creating f(x) is bounded by O(n log n)
since the vector has at most O(n) non-zero coordinates. The reconstruction procedure
performed in a naive manner takes O(n2) time as finding each child of node might take
linear time. To expedite this procedure, we do not build T ′x from the scratch. Since the
trees Tx and Ty differ on at most Õ(k log n) nodes, we can start from Ty (after pruning
its disagreements with Tx) and as result we need to process at most Õ(k log n) entries.
We defer details of this improvement to the long version of this paper.

Having obtained x, Bob can decide ed(x, y) ≤ k in O(n+ k2) time using the algo-
rithm from [12]. This finishes the proof. 2

3 A sketching result for Ulam

Let Sn be the set of permutations over {1, . . . , n}. In this section we present our
sketching result for edit distance over Sn. The following lemma is the heart of this
result.

Lemma 9 Let x, y ∈ Sn. Let f be the mapping described as before. Given the non-
zero coordinates of ∆x,y = f(x) − f(y), there is a Õ(k2 log2 n) algorithm that decides
whether ed(x, y) ≤ k or not.

Proof: First we observe that since x has no repetitions, f(x) is a zero-one vector. Let

X = { i |∆x,y(i) = 1}.

The set X points to the substrings of Tx that are not represented by Ty. Similarly we
define the set Y where it corresponds to the negative coordinates in ∆x,y.

8

Let VX be the set of nodes in Tx that corresponds to X. Clearly root(Tx) ∈ VX .
Now let T (VX) be the rooted tree that is obtained by attempting to reconstruct Tx
starting from root(Tx). To build T (VX), starting from the root, we try to expand
every node until it reaches down to a single character (i.e. to a leaf of Tx) or its
children are entirely missing in VX because they have identical counterparts in Ty.
Note that it is possible that one or two children are missing in VX . In that case, since
we have supplemented every node with the fingerprint of its children, a node can still
be expanded. It is also possible that some nodes in VX are left unpicked after the
end of this process. Those nodes represent substrings whose parents exist in both Tx
and Ty but they are partitioned differently and hence have been mapped to different
coordinates in f(x) and f(y). These nodes will be neglected.

Let ΓX represent the set of vertices in Tx/VX that are the immediate neighbors
of the nodes in T (VX). We also include the leaves of T (VX) which represent single
characters into ΓX . Note that by the non-repetitiveness of x, T (VX) is indeed a partial
subtree of Tx rooted at root(Tx) and hence ΓX is well-defined. Also since for each node
we have stored the information regarding its children, the set ΓX can be computed.
It should be clear that ΓX gives a non-overlapping partitioning of x into Õ(k log n)
blocks. By the definition, every block in ΓX is identical to a represented substring in
Ty. We perform the same process for string y and obtain ΓY .

We cannot claim that there exists a perfect matching between ΓX and ΓY , however
we can find a perfect matching between sets of consecutive blocks. To see this, let C be
the longest block in ΓX ∪ΓY (breaking the ties arbitrarily) and w.l.o.g assume C ∈ ΓX .
Since C has an identical match in Ty it must match a set of consecutive blocks in ΓY .
We pick this matching and continue with finding a matching for the longest block in the
remained unmatched ones. It follows from the definition of ΓX and ΓY and fact that
there are no repeating substrings, every block will be matched at the end. Moreover
such a mapping can be found in O(k2 log2 n) time.

Naturally, the mapping between the consecutive blocks in ΓX and ΓY defines a
perfect matching between the indices in x and y. Let h(i) denote the index where
xi is mapped to. We create two permutations x′ and y′ so that x′i and y′h(i) receive

the same label. Clearly ed(x′, y′) = ed(x, y) since relabeling does not affect the edit
distance. It follows that we can compute the edit distance between x and y. This
last step performed in a naive manner takes O(n log n) time but considering the fact
that in an optimal alignment between x′ and y′ a block is either entirely aligned or it is
deleted, we can find an optimal alignment using a dynamic programming for a weighted
encoding of the problem. Therefore this can also be performed in Õ(k2 log2 n) time. 2

The above lemma combined with Lemma 1 give us the following result.

Theorem 10 There is a randomized mapping uk : Sn → {0, 1}O(k log2 n) such that
given uk(x) and uk(y) for x, y ∈ Sn, there is an Õ(k2 log2 n)-time algorithm that decides
whether ed(x, y) ≤ k or not.

9

4 Concluding remarks

1. In our protocol for the Document Exchange problem, we used a randomized
mapping f : (ed, [m]n) → (Hamming, {0, 1}n′) with polynomially large n′ and
ef = Õ(log n). Is there a similar mapping with ef = o(log n)? Such a mapping
equipped with a polynomial time reconstruction procedure results in an improved
protocol for the DEk problem. On the other hand, given that such a mapping
exists for the Ulam metric (the mapping fU in Section 2), showing the impossi-
bility of a similar fact for the edit distance will result in proving an interesting
seperation theorem between the two metrics. From the angel of the low distortion
embeddings, seperating Ulam from edit distance over repetitive strings has yet
remained an open question.

2. In our sketching result for the Ulam metric, we have not used the simpler mapping
fU of Section 2. This is because it does not preserve the edit distance. In other
words, there are pairs of strings (x1, y1) and (x2, y2) such that fU (x1) − fU (y1)
and fU (x2) − fU (y2) are identical while ed(x1, y1) and ed(x2, y2) are arbitrarily
far apart.

3. The sketching result for Ulam can be generalized to the case when only one of
the strings is a permutation. This is true since we can still relabel the content
of each mapped block with arbitrary characters. Also we may not have a perfect
matching but the content of the blocks that aren’t mapped will be revealed. In
the case of general strings, we can also obtain a mapping between the blocks of
the input strings. However, because of repetitions, it is not clear how we can use
this information to learn the edit distance.

4. The sketching algorithm of Section 3 can be adapted to work as a streaming algo-
rithm over interleaving input sequences. This follows from the fact that Lemma
1 is a streaming result. Moreover since ESP tree can be built in a streaming
fashion (see Section 4.3 in [5]), we are able to derive a streaming algorithm.

Acknowledgement. The author would like to thank Ronitt Rubinfeld for kindly
hosting his visit to MIT. Thanks also to Cenk Sahinalp, Mert Sağlam, Qin Zhang and
Djamal Belazzougui for useful discussions. In particular thanks to Djamal Belazzougui
for bringing [9] to the author’s attention.

References

[1] Alexandr Andoni and Robert Krauthgamer. The computational hardness of esti-
mating edit distance [extended abstract]. In FOCS, pages 724–734, 2007.

[2] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic
approximation for edit distance and the asymmetric query complexity. In FOCS,
pages 377–386, 2010.

10

[3] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approxi-
mating edit distance efficiently. In FOCS, pages 550–559, 2004.

[4] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova,
Ronitt Rubinfeld, and Rahul Sami. A sublinear algorithm for weakly approxi-
mating edit distance. In STOC, pages 316–324, 2003.

[5] Graham Cormode and S. Muthukrishnan. The string edit distance matching prob-
lem with moves. ACM Transactions on Algorithms, 3(1), 2007.

[6] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin.
Communication complexity of document exchange. In SODA, pages 197–206,
2000.

[7] Anna Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. In Proceed-
ings of IEEE, 2010.

[8] Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Esti-
mating the sortedness of a data stream. In SODA, pages 318–327, 2007.

[9] Utku Irmak, Svilen Mihaylov, and Torsten Suel. Improved single-round protocols
for remote file synchronization. In INFOCOM, pages 1665–1676, 2005.

[10] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

[11] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge Uni-
versity Press, 1997.

[12] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string
comparison. SIAM J. Comput., 27(2):557–582, 1998.

[13] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[14] Alon Orlitsky. Interactive communication: Balanced distributions, correlated files,
and average-case complexity. In FOCS, pages 228–238, 1991.

[15] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance.
J. ACM, 54(5), 2007.

[16] Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error
correcting. In CPM, pages 173–182, 2007.

[17] Xiaoming Sun and David P. Woodruff. The communication and streaming com-
plexity of computing the longest common and increasing subsequences. In SODA,
pages 336–345, 2007.

11

