
Fast Computation of Categorical Richness on

Raster Data Sets and Related Problems

M. de Berg∗

TU Eindhoven, the Netherlands

mdberg@win.tue.nl

C. Tsirogiannis†

MADALGO

Aarhus University, Denmark

constant@madalgo.au.dk

B.T. Wilkinson†‡

MADALGO

Aarhus University, Denmark

btw@cs.au.dk

Abstract

In many scientific fields, it is common to encounter raster data sets
consisting of categorical data, such as soil type or land usage of a terrain.
A problem that arises in the presence of such data is the following: given
a raster G of n cells storing categorical data, compute for every cell c in
G the number of different categories appearing within a window centered
at c. The window can either be a (2r + 1) × (2r + 1) square or a disk of
radius r for a positive integer parameter r. We call this the categorical

richness problem, and we present two algorithms for it: one for square
windows that runs in O(n) time and one for circular windows that runs
in O((1 + K/r)n) time, where K is the number of different categories
appearing in G. The algorithms are not only very efficient in theory, but
also in practice: our experiments show that our algorithms can handle
raster data sets of hundreds of millions of cells.

The categorical richness problem is related to colored range counting,
where the goal is to preprocess a colored point set such that we can ef-
ficiently count the number of colors appearing inside a query range. We
present a data structure for colored range counting in R

2 for the case
where query ranges are squares. Our structure uses O(n polylog n) stor-
age and has O(polylog n) query time, which is significantly better than
what is known for arbitrary rectangular ranges.

∗MdB is supported by the Netherlands Organization for Scientific Research under grant
024.002.003.

†Work supported by the Danish National Research Foundation grant DNRF84 through the
Center for Massive Data Algorithmics (MADALGO).

‡Work supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC).

1 Introduction

Background and motivation. Terrain data and other geographic informa-
tion is often stored in the form of a raster data set. The region of interest is
partitioned into a raster (a grid of square cells) and for each cell in the raster
the data pertaining to the corresponding location is stored. Sometimes the data
is numerical; in a digital elevation model (dem), for instance, each cell stores an
elevation value. In other applications the data is categorical. For a terrain, for
example, one may store information about land usage or soil type. Note that
numerical data is sometimes interpreted as categorical by considering different
ranges of values as different categories (i.e., low elevation, medium elevation,
high elevation). Rasters storing categorical data are not only used frequently in
gis, but also in various other fields.

In this paper we are concerned with the following computational problem.
Let G be a raster of n cells storing categorical data and let r be an integer.
Without loss of generality, we assume the cells in G have unit size. We now
wish to compute for each cell c in G its categorical richness, that is, the number
of different category values appearing in its neighborhood. We call this the
categorical richness problem. It comes in two flavors, depending on the shape
of the window defining the neighborhood of a cell c: in some applications the
window is a square of size (2r+1)× (2r+1) centered at c, in other applications
it is a disk of radius r. We refer to the first variant as square richness and to
the second variant as disk richness.

The categorical richness problem appears in many scientific case studies,
under different names. In gis applications, this problem is usually referred to
as computing the patch richness for every cell in a raster [10, 16]. Standard gis

software such as GRASS [14] and FRAGSTATS [13] provide this functionality,
but their implementations are inefficient and cannot handle large data sets.

In ecology, de Albuquerque et al. [6] encounter the square richness problem
when they want to compute the variability of elevation data on a raster terrain.
First, they convert the elevation values of the raster cells into elevation cate-
gories, and then they compute for each cell c the number of elevation categories
that appear within a square window centered at c. They call this the topo-

graphic heterogeneity of the cell. The concept also appears in other ecological
studies [2, 3].

Related work. A straightforward way to solve the categorical richness problem
is to explicitly scan for each cell c in the raster G its (square of circular) window
and record the different category values encountered. Since a window contains
Θ(r2) cells, this algorithm runs in O(nr2) time. This is infeasible for large data
sets, even for moderate values of r. A more refined algorithm would use that
windows of neighboring cells differ in only Θ(r) cells; this can be exploited to
obtain an algorithm with O(nr) time. However, also this approach can become
quite slow for large data sets.

An alternative approach, which avoids the dependency on r, is to use data
structures for colored range counting queries [9] from computational geometry.
These data structures store a set of n colored points—the colors represent the
different categories—such that the number of colors within a query region can
be counted efficiently. After preprocessing the set of cell centers for such queries

one can solve the categorical richness problem by performing a query for each
cell c with the window centered at c. Unfortunately, the known data structures
for colored range counting are not very efficient: the best known structure with
O(polylog n) query time uses O(n2 log2 n) storage [8], which is clearly infeasible
in our application. More efficient solutions exist for reporting (rather than
counting) all colors in the range: one can obtain O(log n+ t) query time (where
t is the number of reported colors) using O(n log n) storage [15], but this is still
too slow for large data sets. For circular ranges, the results are even worse.
Note that our application is offline, that is, all queries are known in advance.
Kaplan et al. [11] give an algorithm for the offline problem with n rectangular
queries, which runs in O(n1.408) time—again too slow for large data sets. They
also showed that an o(n1.186) solution would imply an improvement of the best
running time for the well known Boolean matrix multiplication problem. For
the offline version with circular queries, no results are known.

We conclude that general results on (online or offline) colored range searching
do not solve the categorical richness problem fast enough. The question is thus:
can we exploit the special structure of our problem, where the points form a
grid and the ranges are centered at these grid points, to obtain a fast solution
for the categorical richness problem?

Our results. We answer the above question affirmatively in Section 2, both
for square richness and for disk richness. Our algorithm for square richness
runs in O(n) time, independent of the parameter r specifying the window size.
Our algorithm for disk richness runs in O((1 + K/r)n) time, where K is the
total number of different categories in the data set; in practice, we typically
have K 6 r, in which case the algorithm runs in O(n) time. Our algorithms
are not only efficient in theory, but also in practice: in Section 4 we present an
experimental evaluation showing they can handle raster data sets of hundreds
of millions of cells.

Our second set of results, presented in Section 3, concerns colored range
counting queries for general point sets. We show how to preprocess a set P of
n points in the plane into a data structure of size O(npolylog n) such that a
color counting query with a query square (of arbitrary size) can be answered in
O(polylog n) time—much better than the best known solution for rectangular
queries. We also present a similarly efficient data structure for the 3-dimensional
version of the problem where the query ranges are fixed-size cubes. Finally, we
investigate the hardness of the offline problem for points in R

3 and ranges that
are variable-sized cubes by relating its computational complexity to that of
Boolean matrix multiplication.

2 Algorithms for Richness

2.1 Notation and terminology

The raster. We assume for simplicity that the raster for which we want to com-
pute the categorical richness consists of

√
n×√

n cells, although our approach
also works for non-square rasters. Thus we denote the raster by G[1..√n, 1..

√
n].

We assume without loss of generality that the center of the cell G[i, j] is the point
(i, j) ∈ R

2; hence, the cells of the raster have unit size. When talking about an

arbitrary cell c ∈ G, we use pc to denote the center of p. We define the distance
between two cells c and c′ to be the (Euclidean) distance between their centers
pc and pc′ .

Each cell in G stores a category value. We identify the category values by
positive integers, and let K := {1, 2, . . . ,K} denote the set of all category values
that appear in G. We use cat(c) to denote the category value of a cell c.

Square richness. Let r be a positive integer and let c be a cell in G. We define
Wsq(c), the square window of c, to be the square region of size (2r+1)×(2r+1)
centered at pc. With a slight abuse of notation, we also use Wsq(c) to denote the
set of cells whose centers are insideWsq(c). Thus we sometimes write c′ ∈ Wsq(c)
instead of pc′ ∈ Wsq(c). We define Ksq(c) ⊆ K to be the set of all category values
that occur in the window Wsq(c), that is, Ksq(c) is the set of all k ∈ K such
that there is a cell c′ ∈ Wsq(c) with cat(c′) = k. Finally, we define richsq(c), the
square richness of a cell c, as the number of category values in Wsq(c). In other
words, richsq(c) := |Ksq(c)|. The square richness problem is now to compute
richsq(c) for all cells c ∈ G.
Disk richness. The disk richness problem is defined in a similar way. We now
use a window Wd(c), which is a disk of radius r centered at pc, define Kd(c) to
be the set of category values occurring in Wd(c), and define richd(c) := |Kd(c)|
to be the disk richness of c.

2.2 An optimal algorithm for square richness

Next we describe an algorithm that solves the square richness problem in O(n)
time, which is optimal. The algorithm is based on the following simple obser-
vation.

Observation 1. Let c and c′ be two cells in G. Then c ∈ Wsq(c
′) if and only if

c′ ∈ Wsq(c). Hence, k ∈ Ksq(c) if and only if c ∈ Wsq(c
′) for at least one cell c′

with cat(c′) = k.

This observation implies that k ∈ Ksq(c) if and only if c falls inside the union
of all windows Wsq(c

′) such that cat(c′) = k. We call the region covered by this
union the influence region of k, and we denote it by A(k).

The global algorithm. Observation 1 suggests the following algorithm. First,
for each category value k ∈ K, extract all cells c with cat(c) = k and compute
the influence region A(k). Next, scan all cells in G and calculate for each cell c
the number of influence regions containing c. To do this efficiently, we need to
refine the algorithm in the following way: instead of processing G as a whole,
we partition it into horizontal strips, each consisting of 2r+ 1 consecutive rows
from G (except maybe the top strip, which can have fewer rows). Thus we have
a strip G[1..√n, 1..2r + 1], a strip G[1..√n, 2r + 2..4r + 2], and so on.

Each strip S is handled as follows. Define KS ⊆ K to be the set of categories
k such that there is a window Wsq(c) intersecting S and with cat(c) = k. Define
AS(k) to be the part of A(k) that falls within S. We start by computing
AS(k) for all k ∈ KS . To this end, we first determine C(S, k), the collection of
cells c ∈ G such that cat(c) = k and Wsq(c) intersects S. Note that any cell
c ∈ C(S, k) is either a cell of the strip S itself, or a cell of the strips immediately
above or below S. Hence, by scanning these (at most) three strips we can

Figure 1: Adding a square to the envelope. The fat polyline indicates the
current envelope. When the grey window W is added, the non-solid corners are
replaced by the corner of W indicated by a cross.

generate the sets C(S, k) in O(r
√
n) time. Note that by scanning the strips

column by column, we can make sure the cells in C(S, k) are ordered from left
to right.

Let W(S, k) denote the set of windows corresponding to the cells in C(S, k).
To compute AS(k) we run a subroutine UnionInStrip on W(S, k). After we
compute all regions AS(k), we feed them to a subroutine RichnessInStrip. This
subroutine computes for every cell c in S the number of regions AS(k) containing
c, which is equal to the square richness for this cell. The complete algorithm,
which we call SquareRichness , is summarized as follows.

Algorithm SquareRichness(G)
1. Partition G into strips of 2r + 1 consecutive rows each.
2. for every strip S in G
3. do Determine the set KS .
4. Generate the sets C(S, k) for all k ∈ KS .
5. for all k ∈ KS

6. do AS(k)← UnionInStrip(S,W(S, k))
7. Run RichnessInStrip on AS(k) for k ∈ KS .

It remains to describe the subroutines UnionInStrip and RichnessInStrip. For
the rest of this section, we use S[i, j] to denote the cell that appears in the i-th
column and j-th row of strip S. Without loss of generality, we assume that the
center of this cell has coordinates (i, j).

Subroutine UnionInStrip. Consider a category k ∈ K and a strip S. Let
Union(W(S, k)) denote the union of all windows in W(S, k). Our goal is to
compute AS(k), which is equal to Union(W(S, k)) ∩ S. To this end we first
partition C(S, k) into two sets, C(S, k)b and C(S, k)t, which contain the win-
dows intersecting the bottom and top boundary of S, respectively. Note that
every window in W(S,m) must intersect at least one of the two boundaries.
A window that intersects both boundaries is arbitrarily assigned to one of the
two sets. We describe how to compute Union(W(S,m)b) ∩ S; we can compute
Union(W(S,m)t) ∩ S in a similar way.

The portion of the boundary of Union(W(S,m)b) above the bottom edge
of S is the upper envelope of W(S,m)b. We incrementally build this upper
envelope, adding the windows of W(S,m)b in order from left to right. (If we
have several windows whose centers have the same x-coordinate, we only need
to process the highest one.) Our representation of the upper envelope is simply
the sorted list of window corners that appear on the upper envelope, from which
it is straightforward to extract a full description of the envelope in linear time.
Suppose we are currently inserting window W . As long as the rightmost corner

of the current upper envelope is contained in W , we delete the corner; see Fig. 1.
This process will terminate due to one of two possible reasons.

One possibility is that we encounter a corner v which is above W . Then, v
must be the top-right corner of a window W ′. Since W and W ′ have the same
size, the top side of W ′ is above the top side of W to the left of v. Hence, no
further changes are required to the upper envelope to the left of v. We finish
this case by adding the top-right vertex of W to the upper envelope.

Another possibility is that we reach a corner v that is to the left of the left
side of W (or there are no remaining corners). Then, we simply add the top-left
and top-right corners of W to the upper envelope.

After computing the lower envelope of W(S,m)t in a similar way, we have
the boundaries of Union(W(S,m)b) ∩ S and Union(W(S,m)t) ∩ S available.
Computing AS(k) can now easily be done by a parallel left-to-right scan of the
just computed envelopes. This leads to the following lemma.

Lemma 2. Given a set C(S, k) whose cells are sorted from left to right, we can

compute AS(k) in O(|C(S, k)|) time. Hence, we can compute all regions AS(k)
for k ∈ KS in O(r

√
n) time in total.

Proof. Consider the algorithm described above for constructing the upper enve-
lope of W(S, k)b. Inserting the windows of W(S, k)b takes O(|W(S, k)b|) time
in total, because each window corner can be inserted into and deleted from
the upper envelope at most once. Similarly, we compute the lower envelope
of W(S, k)t in O(|W(S, k)t|) time, which sums to O(|W(S, k)|) = O(|C(S, k)|)
time for computing both envelopes. The time to compute AS(k) by a parallel
scan of the two envelopes is linear in the size of those envelopes and the number
of crossings between the two envelopes, which is easily seen to be linear in the
size of the envelopes. (Indeed, a vertical segment of one envelope intersects at
most one horizontal segment of the other envelope.)

To prove the second part of the lemma, we note that (as already described)
we can generate the sorted sets C(S, k) in O(r

√
n) time. This also implies that∑

k∈KS
|C(S, k)| = O(r

√
n), which finishes the proof.

Subroutine RichnessInStrip. Given a strip S and the set of influence regions
AS(k) for k ∈ KS , we want to compute the square richness |Ksq(c)| of each cell
in S. Recall that k ∈ Ksq(c) if and only if pc ∈ AS(k), where pc is the center of c.
We can decide if pc ∈ AS(k) by splitting the set of vertices of AS(k) into two
subsets and counting the number of vertices of each subset that are dominated
by pc, as explained next.

Let V (k) be the set of vertices of AS(k). We split V (k) into subsets Vtl+br(k)
and Vbl+tr(k), as follows. Each vertex v ∈ V (k) is an endpoint of exactly one
vertical edge, which can either be left-bounding (meaning AS(k) lies locally
to the right of the edge) or right-bounding (meaning AS(k) lies locally to the
left). If v is the top vertex of a left-bounding edge or the bottom vertex of a
right-bounding edge, we add v to Vtl+br(k); otherwise we add v to Vbl+tr(k).

A point (x1, y1) dominates another point (x2, y2) if and only if x1 > x2 and
y1 > y2. Given a point p and a (multi-)set V of points, let Dom(V, p) be the
subset of V dominated by p. Our algorithm is based on the following lemma.

Lemma 3. Let c be a cell in S with center pc. Define µk(pc) := |Dom(Vbl+tr(k), pc)|−
|Dom(Vtl+br(k), pc)|. If pc ∈ AS(k) then µk(c) = 1, otherwise µk(c) = 0.

Proof. Let ρ be the horizontal ray starting at pc and extending to the left. If
pc ∈ AS(k), then ρ intersects one more left-bounding edge than it intersects
right-bounding edges; if pc 6∈ AS(k), then ρ intersects as many left-bounding as
right-bounding edges. A left-bounding edge intersecting ρ contributes one vertex
to Vbl+tr(k) and no vertices to Vtl+br(k), while a right-bounding edge intersecting
ρ contributes one vertex to Vtl+br(k) and no vertices to Vbl+tr(k). Hence, the
total contribution to µk(c) of the edges intersecting ρ is +1 if pc ∈ AS(k) and
zero otherwise.

The vertical edges not intersecting ρ have both endpoints dominated by pc
or neither endpoint. Hence, their contribution to µk(c) is zero. (For an edge
with neither endpoint being dominated this is trivial; for an edge with both
endpoint dominated this follows because the contributions of the two endpoints
of a vertical edge cancel each other.) Thus µk(c) = 1 if pc ∈ AS(k) and µk(c) = 0
otherwise.

According to Lemma 3 we can decide if pc ∈ AS(k) by counting the number
of points in Vtl+br(k) and Vbl+tr(k) dominated by pc. Instead of doing this
separately for each k ∈ K, we combine these computations. To this end, define
Vtl+br and Vbl+tr to be the multisets obtained by merging all sets Vtl+br(k) and
Vbl+tr(k), respectively. We have the following lemma, which readily follows from
Lemma 3.

Lemma 4. The number of influence regions containing pc is equal to µ(pc) :=
|Dom(Vbl+tr, pc)| − |Dom(Vtl+br, pc)|.

We compute the values µ(pc) for all cells c ∈ S in a batched manner, as
follows. Let M [1..

√
n][1..2r + 1] be a matrix that has the same number of rows

and columns as S. Each entry in M is an integer, and initially all entries are
set to zero. Note that the points in Vbl+tr and Vtl+br are vertices of influence
regions AS(k), which means that they lie on corners of cells in S. We now go
over the points in the multisets Vbl+tr and Vtl+br one by one. When handling a
point v we update an entry of M as follows. Let (i, j) be the center of the cell of
S of which v is the bottom-left corner. If v ∈ Vbl+tr then we increment M [i, j],
and if v ∈ Vtl+br then we decrement M [i, j]. (If v is not the bottom-left corner
of any cell in S—this can happen when v lies on the top or right boundary of
the strip—then we do nothing.)

Note that a center pc := (i, j) dominates a point v ∈ Vbl+tr ∪ Vtl+br if and
only if v is the bottom-left corner of some cell with center (i′, j′) for i′ 6 i and
j′ 6 j. Hence,

µ((i, j)) =
∑

i′6i

∑

j′6j

M [i′, j′].

This is the so-called prefix sum of entry M [i, j]. Given a matrix M , the prefix
sums of all entries in M can be computed in linear time with a simple algorithm
that scans the matrix row by row and uses that µ((i, j)) = µ((i − 1, j)) +∑

j′6j M [i, j′]. This leads to the following lemma.

Lemma 5. Let S be a strip that consists of at most 2r+1 consecutive rows in

G. Given the influence regions AS(k) for all k ∈ KS , we can compute the value

richsq(c) for every cell c ∈ S in O(r
√
n) time in total.

Putting it together. Since we have ⌈√n/(2r + 1)⌉ strips in total, Lemmas 2
and 5 and the fact that |KS | = O(r

√
n) imply the following result.

Theorem 6. Let K be a set of category values. Let G be a raster of n cells, each

storing a value in K. Algorithm SquareRichness computes the square richness

for every cell in G in O(n) time in total.

2.3 An algorithm for disk richness

Our algorithm for the disk richness problem is based on a similar observation
as we used for square windows.

Observation 7. Let c and c′ be two cells in G. Then c ∈ Wd(c
′) if and only if

c′ ∈ Wd(c). Hence, k ∈ Kd(c) if and only if c ∈ Wd(c
′) for at least one cell c′

with cat(c′) = k.

Thus we still have that k ∈ Kd(c) iff c lies inside the union of all windows
Wd(c

′) with cat(c′) = k. However, computing the union is significantly more
complicated for disks, and we need to adapt our algorithm in several ways.

The global algorithm. Instead of partitioning the raster G into strip we now
partition it into O(n/r) tiles, where each tile consists of (at most) ⌊r/

√
2⌋ ×

⌊r/
√
2⌋ cells. The tiles are processed as follows.

Consider a tile T and a window Wd(c) of a cell c ∈ T . Because the diameter
of T—that is, the distance between the centers of the top-left and bottom-right
cells in T—is at most the radius of our windows, we know that Wd(c) covers
the centers of all cells in T . Based on this observation, we scan all cells in T
to determine the subset Kin of categories associated with the cells c ∈ T . For
each cell c ∈ T , we initialize richd(c) to |Kin|. Let Kout denote the categories
in K \ Kin whose influence regions overlap with T . We need to compute for all
cells c ∈ T the number of influence regions of categories in Kout that contain c,
and add this number to richd(c). This is done as follows.

Let ℓtop, ℓbot, ℓleft, and ℓright denote the lines containing the top, bottom,
left, and right edge of T , respectively. For a category k ∈ Kout, let Dout(k) be
the collection of windows Wd(c) that intersect T and have cat(c) = k. Note that∑

k |Dout(k)| = O(r2) and that the sets Dout(k) can be generated in O(r2) time.
We partition Dout(k) into four subsets Dtop(k), Dbot(k), Dleft(k), and Dright(k).
The set Dtop(k) consists of all windows in Dout(k) whose centers lie above ℓtop,
and the set Dbot(k) consists of all windows whose centers lie below ℓbot. The
set Dleft(k) contains all windows whose centers lie to the left of ℓleft, and which
do not belong to Dtop(k) or Dbot(k). The set Dright(k) contains the rest of the
windows in Dout(k); note that these windows have their center to the right of
ℓright.

For each of these four sets we will compute the part of their union inside T
using a subroutine EnvelopeInTile. This part is bounded by a (lower, upper,
left, or right) envelope, which will allow us to compute them efficiently. Then we
will process the collection of these envelopes using a subroutine RichnessInTile.
Thus we get the following global algorithm.

Algorithm DiskRichness(G)
1. Partition G into tiles of ⌊r/

√
2⌋ × ⌊r/

√
2⌋ cells each.

2. for each tile T in G
3. do Determine the set Kin of all categories stored in T , and set richd(c) = |Kin|

for every cell c ∈ T .
4. Generate the sets Dtop(k), Dbot(k), Dleft(k), and Dright(k) for all k ∈ Kout.
5. for every k ∈ Kout

6. do Etop(k)← EnvelopeInTile(Dtop(k))
7. Ebot(k)← EnvelopeInTile(Dbot(k))
8. Eleft(k)← EnvelopeInTile(Dleft(k))
9. Eright(k)← EnvelopeInTile(Dright(k))
10. Run RichnessInTile on the collection of envelopes computed in Steps 5–9.

It remains to describe the subroutines EnvelopeInTile and RichnessInTile.

Subroutine EnvelopeInTile . Consider a tile T and a collection Dbot(k) of
disks whose centers lie below ℓbot, the line containing the bottom edge of T . We
describe a subroutine EnvelopeInTile that computes the part of Union(Dbot(k))
inside T . The parts of Union(Dtop(k)), Union(Dleft(k)), and Union(Dright(k))
inside T can be computed similarly.

As in the case of square windows, we may assume that we generated Dbot(k)
such that the disks in Dbot(k) are sorted from left to right. If we have multiple
disks whose centers have the same x-coordinate we only need to keep the highest
one. Thus we can also assume that Dbot(k) (and similarly Dtop(k), Dleft(k), and
Dright(k)) have size O(r).

Let ℓ+bot denote the halfplane above ℓbot. For each disk Wd(c) ∈ Dbot(k),
let α(c) := ∂Wd(c) ∩ ℓ+bot denote the part of the boundary of Wd(c) above ℓbot.
Note that Union(Dbot(k)) in T is bounded from above by (a part of) the upper
envelope of the arcs α(c); see Fig. 2. Thus computing Union(Dbot(k)) in T boils
down to computing this envelope. To do this we need the following lemma.

Lemma 8. Let D be a set of disks intersecting a horizontal line ℓ whose centers
lie below ℓ. Let D be the disk in D whose center has maximum x-coordinate. If
D contributes to the upper envelope of the disks above ℓ, then its contribution

is a single arc that is the rightmost arc of the envelope.

Proof. Let p1 be the rightmost intersection of the boundary of D with ℓ. Let E
be the upper envelope of all the windows in D except for D. We consider two
cases: whether or not p1 lies under E .

In the first case, p1 is not under E . Consider traversing the boundary of D
counter-clockwise starting just to the left of p1. During this traversal, let p2 be
the first intersection point that we encounter between the boundary of D with E
or ℓ. If p2 lies on ℓ then we are done since D contributes to the upper envelope
the arc from p1 to p2, and the rest of the boundary of D lies under ℓ. Otherwise,

ℓbot

Figure 2: The part of Union(Dbot(k)) inside T is shown in grey. It is bounded
from above by the upper envelope of the arcs α(c).

p2 lies on the boundary of a window D′ ∈ D. Note that p2 is one of the two
intersection points between the boundaries of D′ and D. We now claim that
the other intersection point p′2 must lie below ℓ, which implies that D cannot
contribute anything other than the arc from p1 to p2 to the upper envelope.

Consider the centers q and q′ of D and D′, respectively. Both intersection
points p2 and p′2 lie on the perpendicular bisector of qq′. Furthermore they lie
in opposite directions from the midpoint of qq′. Since both q and q′ lie under ℓ,
so must the midpoint of qq′. Since p2 lies over ℓ it must be that p′2, which is in
the opposite direction of the midpoint of qq′, must lie under ℓ.

In the second case, p1 lies under E . Thus, it is inside another windowD′ ∈ D.
Let I ′ and I be the intervals formed by intersecting ℓ withD′ andD respectively.
We first claim I ′ contains I. Again, let q′ and q be the centers of D′ and D,
respectively. Notice that the midpoint of I has the same x-coordinate as q, and
the same holds for the midpoint of I ′ and q′. Since q is to the right of q′, we
have that the midpoint of I is to the right of the midpoint of I ′. Thus, more
than the right half of I is contained in the right half of I ′. Therefore, also the
left half of I is contained in I ′. Given this configuration, and since the two disks
are not identical, if the boundary of D were to intersect with the boundary of
D′ above ℓ, it would need to do so twice. However, we have already argued
that at most one intersection between the two boundaries can occur above ℓ.
So, window D does not contribute to the upper envelope of D, and the lemma
follows.

Let Arcs(Dbot(k)) := {α(c) : Wd(c) ∈ Dbot(k)} be the set of arcs of which we
want to compute the upper envelope, sorted from left to right. (More precisely,
sorted according to the x-coordinate of the centers of the corresponding disks
Wd(c).) Our algorithm to compute the upper envelope of Arcs(Dbot(k)) is
similar to the algorithm we used for constructing the upper envelope of a set of
squares: we go over the arcs in order, and when adding an arc α(c) we remove
the part of the current envelope below α(c) and we add the relevant part of α(c).
The details are as follows.

We maintain a list L that stores the portions of the arcs α(c) appearing on
the current envelope, ordered from left to right. To process the next arc α(c),
we first check if the right endpoint of α(c) lies to the right of the right endpoint
of the last arc in the list. If this is not the case, then α(c) does not contribute
to the envelope (by Lemma 8) and we are done with α(c). Otherwise we start
walking back along L as long as we encounter envelope arcs that lie entirely
below α(c), and we remove these arcs from L. The walk continues until either
(i) we encounter an arc β that is intersected by α(c), or (ii) we encounter an arc
that lies fully to the left of α(c), or (iii) the list L becomes empty.

In case (i) we shrink β by removing the part of β below α(c) and we append
the part of α(c) to the right of the intersection point q := α(c) ∩ β to the list
L. By Lemma 8 the arc α(c) does not contribute anything to the left of q, and
so we can stop. In case (ii) and (iii) we simply append the entire arc α(c) to L,
and we can stop as well.

The running time of the algorithm described above is linear in the number
of arcs it processes, since each arc is inserted and deleted at most once. This
leads to the following lemma. Let Ebot(k) denote the envelope that forms the

upper boundary of Union(Dbot(k)) ∩ T . Define Etop(k), Eleft(k), and Eright(k)
similarly for Dtop(k), Dleft(k), and Dright(k).

Lemma 9. EnvelopeInTile can compute Ebot(k), Etop(k), Eleft(k), and Eright(k),
in O(r) time.

We now present a property of the envelopes that is useful for the rest of our
analysis.

Lemma 10. Each envelope Ebot(k), Etop(k), Eleft(k), and Eright(k) intersects

O(r) cells of T .

Proof. We prove the lemma for the envelope Ebot(k); the same arguments apply
to the other envelopes.

We call a point q ∈ Ebot(k) an extremum if q is a local maximum or a local
minimum on Ebot(k), and q is not the leftmost or rightmost point of Ebot(k).
Note that a local maximum is the top point of a window; a local minimum is
a vertex of Ebot(k), that is, an intersection between two window boundaries,
or between a window boundary and ℓbot. We split Ebot(k) into pieces at the
extrema. As we traverse such a piece from left to right, the y-coordinate is
monotonically increasing or decreasing. This means that each piece has Eu-
clidean length at most 2r. In particular, the first and last pieces have total
length at most 4r. All other pieces are bounded by two extrema. Consider such
a piece, which lies between successive extrema b and b′. Then the length of the
envelope between b and b′ is at most |x(b)−x(b′)|+ |y(b)−y(b′)|. We claim that
|x(b) − x(b′)| > |y(b) − y(b′)|. This implies that the length of Ebot(k) between
the first and last extremum is bounded by 2r, and thus that the total length
of Ebot(k) is at most 6r. This bound on the length implies that Ebot(k) crosses
only O(r) cells.

It remains to prove the claim. Assume without loss of generality that b is a
local maximum and b′ is a local minimum, and let D ∈ Dbot(k) be the window
whose top is b. Consider the rectangle B whose opposite corners are b and b′.
Let q be the intersection between the boundary of D with the bottom edge of
B. Then we have |x(b) − x(q)| > |y(b) − y(q)| > |y(b) − y(b′)|, where the first
inequality follows from the fact that the center of D lies below ℓbot.

Subroutine RichnessInTile . Subroutine RichnessInTile takes as input the
four envelopes Ebot(k), Etop(k), Eleft(k), and Eright(k) for each of the cate-
gories k ∈ Kout. Its task is to determine for each cell c ∈ T the number of
categories k ∈ Kout such that c is covered by a window in Dout(k). The latter
is the case if (the center of) c lies below Ebot(k), above Etop(k), to the left of
Eleft(k), or to the right of Eright(k). RichnessInTile is based on this observation,
and consists of two steps.

Step I: Computing entry and exit cells in each column. Consider an envelope E
(which is one of the four envelopes Ebot(k), Etop(k), Eleft(k), or Eright(k), for some
k) and a column T [i, 1..⌊r/

√
2⌋] of the tile T . Let A(E) denote the area enclosed

by E and the corresponding edge of T . The area A(Ebot(k)), for example is
enclosed by Ebot(k) and the bottom edge of T . As we traverse the column from
bottom to top, we may enter and exit the area A(E) one or more times. We call
the cells where this happens entry cells and exit cells (for the given envelope)
where the first cell in a column is also considered an entry cell if it lies inside

A(E); see Fig. 3. The envelopes Ebot(k) and Etop(k) have at most one entry and
exit cell per row, while Eleft(k) or Eright(k) may have multiple entry and exit
cells. Note that entry and exit cells can coincide, if we have a cell whose center
is inside A(E) while the centers of both adjacent cells are outside.

In Step I we compute, for each k and each envelope Ebot(k), Etop(k), Eleft(k),
and Eright(k), all entry and exit cells. This is done as follows.

First consider Ebot(k). Here a cell T [i, j] is an exit cell if Ebot(k) crosses the
segment connecting (i, j) and (i, j + 1) or if T [i, j] is the top cell in a column
and Ebot(k) passes above (i, j). Thus we can compute all exit cells by tracing
Ebot(k) through T , visiting all cells it crosses. In each column where Ebot(k) has
an exit cell, the bottom cell of the column is an entry cell. By Lemma 10, we
can thus compute all entry and exit cells in O(r) time. The entry and exit cells
for Etop(k) can be computed in a similar way.

Now consider Eleft(k); the envelope Eright(k) is handled similarly. We first
compute, in a similar way as above, the row exit cells with respect to Eleft(k);
these are the cells T [i, j] such that (i, j) lies to the left of Eleft(k) while (i+1, j)
lies to the right. We can now decide which cells in a row are column entry
and exit cells by looking at the row exit cells in adjacent columns. Indeed,
suppose T [i, j] is the row exit cell in the i-th row, and T [i + 1, j′] is the row
exit cell in the (i+ 1)-th column. Then if j′ > j then all cells T [i+ 1, j′′] with
j < j′′ 6 j′ are entry cells, and if j′ < j then all cells T [i, j′′] with j′ < j′′ 6 j
are exit cells. Because the total number of entry and exit cells is O(r)—this
follows from Lemma 10 and the fact that for each entry or exit cell, the envelope
must either cross that cell or a neighboring cell—we spend O(r) time in total
to compute the entry and exit cells for Eleft(k).
Step II: Computing the richness values. With the set of all entry and exit cells
available, we can compute the richness of the cells in T column by column. To
process a column, we need a counter count [k] for each k ∈ Kout and a global
counter countg, all initialized to zero. We use count [k] to count how many of the
regions A(Ebot(k)), A(Etop(k)), A(Eleft(k)), and A(Eright(k)) contain the current
cell; thus 0 6 count [k] 6 4. The global counter countg counts how many of the
counters count [k] are positive for the current cell. Thus countg indicates the
number of categories k ∈ Kout such that c is covered by a window in Dout(k).

Note that a cell can be an entry and/or exit cell for several different cate-
gories k. As we traverse a column we handle each encountered cell as follows: for
all categories k for which the current cell is an entry cell we increment count [k]
and if count [k] was zero we also increment countg. Next we output countg as

Figure 3: Entry cells are indicated by small squares, exit cells are indicated by
crosses. On the left the entry and exit cells for Ebot(k) are shown, on the right
for Eleft(k).

the richness of the current cell. Finally, for all categories k for which the current
cell is an entry cell we decrement count [k] and if count [k] becomes zero we also
decrement countg.

As explained above, Step I of the subroutine spends O(r) time for each
k ∈ Kout. Thus the total time for Step I, and also the total number of entry
and exit cells generated, is O(r · |Kout|) = O(rK). Step II spends O(1) time at
each cell in T , plus O(1) time for each of the entry and exit points computed in
Step I. We get the following lemma.

Lemma 11. RichnessInTile runs in O(r2 + rK) time.

Putting it together. Since we have O(n/r2) tiles in total, Lemmas 9 and 11
together imply the following result.

Theorem 12. Let K be a set of category values. Let G be a raster of n cells,

each storing a value in K. Algorithm DiskRichness computes the disk richness

for every cell in G in O((1 +K/r)n) time in total.

3 Colored range counting

Let P be a set of n colored points in R
d—note that we do not require the

points in P to form a grid—and let K := {1, . . . ,K} denote the set of colors
associated to the points in P . In this section we study data structures for colored
range counting : given a query range R, compute the number of distinct colors
associated with the points of P inside R.

3.1 Square ranges in R
2

We start by presenting a data structure for colored range counting in R
2, for

the case where the query range is an (arbitrarily-sized) square. Our solution in
Section 2.2 hinged on the duality property of Observation 1. In the current set-
ting we can no longer use this duality property, because different query squares
may have different sizes. In order to obtain a duality property for variable-size
queries, we need to move into three dimensions.

Definitions. We define the radius of a square be half of its side length. For
a point p, let Wr(p) be the square window of radius r centered at p, and let
Kr(p) ⊆ K be the set of all colors that occur in the window Wr(p). The richness
of Wr(p) is richr(p) := |Kr(p)|. For a color k ∈ K, let Pk ⊆ P be the set of
points with color k.

If p is a point on the plane z = 0, let p ↑ z′ denote the same point lifted to
the plane z = z′. This notation extends to sets of points. Let Pyramid(p) be an
infinitely large upside-down 3-dimensional pyramid with its apex at some point
p in the z = 0 plane. Thus Pyramid(p) =

⋃
r∈R+(Wr(p) ↑ r).

Main idea. The following lemma is a duality property that is useful for
variable-size queries. The lemma is well known, but for completeness we provide
a proof here.

Lemma 13. For any two points p and q we have p ∈ Wr(q) if and only if

q ↑ r ∈ Pyramid(p).

Proof. The intersection of Pyramid(p) with the plane z = r is an elevated
window Wr(p) ↑ r. Thus, q ↑ r ∈ Pyramid(p) if and only if q ↑ r ∈ Wr(p) ↑ r.
Clearly, q ↑ r ∈ Wr(p) ↑ r if and only if q ∈ Wr(p). By Observation 1, q ∈ Wr(p)
if and only if p ∈ Wr(q).

Lemma 13 implies that k ∈ Kr(q) if and only if q ↑ r lies in the union of
all pyramids Pyramid(p) where p ∈ Pk. Similarly to Section 2.2, we therefore
define the influence region A(k) as the union of pyramids of the points in Pk.

Our data structure now works as follows. We construct for each color k ∈ K
the influence region A(k). For a query range with radius rq and center q, the
richness richrq (q) is the number of influence regions containing q ↑ rq. To
compute this number we decompose the influence regions into simpler parts,
and count how many of these simpler parts contain point q ↑ rq.

Complexity of influence regions. To be able to analyze the efficiency of our
data structure we need to bound the complexity of the influence regions.

Lemma 14. For each color k ∈ K, the complexity of the influence region A(k)
is O(|Pk|).
Proof. An edge of an influence region can either be an edge of one of the pyra-
mids or an intersection of faces of pyramids. We call the former pyramid edges

and the latter intersection edges. There are 4|Pk| pyramid edges, because when
a pyramid edge enters another pyramid Pyramid(p), it stays inside Pyramid(p).
To bound the number of intersection edges, we note that the projection of these
edges onto the plane z = 0 is equal to the L∞-Voronoi diagram of the points
in Pk. (The relation between Voronoi diagrams in the plane and the lower en-
velope of certain cones is well known. For the Euclidean distance the cones are
circular; for the L∞-distance the cones are as defined above.) A linear bound
on the number of intersection edges thus follows from the fact that L∞-Voronoi
diagrams have linear complexity [1].

Decomposition of influence regions. Consider the map Mk formed by pro-
jecting the faces of A(k) to the plane z = 0. We know that Mk has O(|Pk|)
faces due to Lemma 14. The map is octilinear since L∞-Voronoi diagrams are
octilinear and the projections of the pyramid edges align with four of these eight
directions. We partition each face of Mk into smaller faces with constant com-
plexity by shooting vertical rays up and down from each vertex. The resulting
faces are vertical slabs that may be cut at the ends with horizontal or diagonal
cuts. Let the new map with these simpler faces be M′

k. It also has O(|Pk|)
faces, each with O(1) complexity.

We decompose A(k) into O(|Pk|) pieces Fk, such that each piece is the subset
of A(k) that lies above some face of M′

k. We call these pieces towers. Thus,
richrq (q) is the number of towers (across the influence regions of all colors) that
contain point q ↑ rq. The following lemma describes a data structure that can
efficiently compute the number of towers stabbed by an arbitrary query point.

Lemma 15. There exists a data structure for counting the number of towers

stabbed by a query point that uses O(npolylog n) space and has O(polylog n)
query time.

Proof. Every input tower is the intersection of at most 5 halfspaces. Each halfs-
pace has one of 12 orientations. We partition the input towers into types based
on number and orientation of their defining halfspaces. There are a constant
number of types of towers. We handle each type of tower separately and to
answer a query we simply add the counts for each type. Fix a type of tower
formed by b halfspaces with b different orientations. For each orientation of
halfspaces, we create a coordinate axis that is normal to the bounding planes
of the halfspaces and that increases towards the interiors of the halfspaces. We
transform each tower F into a b-dimensional point f . For each defining half-
space of F , the coordinate of f on the associated coordinate axis is the value
on the axis that the halfspace’s bounding plane intersects. We also transform
q into a b-dimensional point q′. For each coordinate axis, the coordinate value
of q′ is the projection of q onto the axis. In this way, q ∈ F if and only if q′

dominates f . Computing the number of b-dimensional points dominated by a
b-dimensional point is an instance of b-dimensional dominance range counting,
which can be solved in O(npolylog n) space and O(polylog n) query time for
any constant b via range trees [4].

We conclude with the following theorem.

Theorem 16. Let P be a colored point set in R
2. We can store P in a data

structure using O(npolylog n) space such that colored range counting queries

with square ranges can be answered in O(polylog n) time.

3.2 Cube ranges in R
3

We now consider the 3-dimensional generalization of the problem studied in the
previous section. Thus P is a set of n colored points in R

3 and the query ranges
are (arbitrarily-sized) cubes. We will show that we should not expect to obtain
a data structure of similar efficiency—O(npolylog n) storage and O(polylog n)
query time—as in the square case. Our negative result holds in an offline setting,
that is, when all query ranges are known in advance.

We begin with a simple generalization of a technique of Kaplan et al. [11]
which is able to reduce Boolean matrix multiplication to offline colored range
counting problems. The proof of this lemma is similar to the proof given by
Kaplan et al..

Lemma 17. Let R be a family of ranges in R
d. Suppose that there exist two

point sets P,Q in R
d and a set of ranges R ⊆ R such that:

• |P | = |Q| = √
n and |R| = n,

• for every (p, q) ∈ P ×Q, there is a range R ∈ R such that R ∩ (P ∪Q) =
{p, q}.

Then we can multiply two Boolean matrices of size
√
n × √

n by performing

n colored range counting queries with ranges from R on a colored point set

containing at most 2n colored points in R
d.

Proof. We are given two
√
n×√

n Boolean matrices A = {ai,j} and B = {bi,j}.
We wish to compute C = {ci,j} where ci,j =

∨
k(ak,i ∧ bj,k).

We assign each row k of A to a distinct point pk ∈ P . For each true entry
ak,i, we construct a point of color i at position pk. We also store a count rowk

with the number of true entries in the row. Similarly, we assign each column k
of B to a distinct point qk ∈ Q. For each true entry bj,k, we construct a point of
color j at position qk. We also store a count colk of the number of true entries
in the column. We thus construct a set PA of at most n points for the rows of
A and a set PB of at most n points for the columns of B.

Note that ci,j is true if and only if the range R ∈ R that contains only pi and
qj contains a duplicate color k, because then there is a k with ak,i = true and
bj,k = true. To decide whether or not there is a duplicate color, we count the
number of colors in R and compare it to rowi+colj . We can thus evaluate all n
cells of C by performing n colored range counting queries on the set PA∪PB .

Remark. The proof of Lemma 17 exploits the ability to create point sets
with many differently colored points at the same position. (Thus the point set
is actually a multiset.) In our setting, where the ranges are cubes in R

3, it is
straightforward to perturb the points and ranges so that they do not share any
coordinate values.

The reduction in the proof of the lemma above yields an instance of an offline
range searching problem, since all queries can be generated in advance. Using
this lemma, we obtain the following theorem.

Theorem 18. Suppose there is a data structure for offline colored range count-

ing in R
3 with cube ranges that has Tprep(n) preprocessing time and Tquery(n)

query time. Then we can multiply two Boolean matrices of size
√
n × √

n in

time O(Tprep(2n) + n · Tquery(2n)) time.

Proof. We intend to invoke Lemma 17 where R is the set of all axis-aligned
cubes in R

3. All points of the sets P and Q that we construct will lie on the
plane z = x+ y. Let a cubic section be any two-dimensional shape formed by
the intersection of an axis-aligned cube with the plane z = x+ y. We choose a
new coordinate system so that the plane z = x+ y in the old coordinate system
becomes the plane z = 0 in the new coordinate system and each cubic section
has a side parallel to the new x-axis. Then it is sufficient to consider the case
where R is the set of all cubic sections in R

2.
A cubic section is the intersection of two equilateral triangles with the same

centers such that one has a bottom side that is parallel to the x-axis and the
other has a top side that is parallel to the x-axis. (These triangles are the
intersections of opposing octants with the plane z = 0. The intersection of

p

v

q

R

Figure 4: The cubic section R that hits p and q.

the opposing octants is the cube from which the cubic section arises.) A cubic
section has either three or six sides. If it has three sides, then it is an equilateral
triangle. Otherwise, its opposite sides are parallel and side lengths alternate
between two values around the cubic section.

Let P be
√
n points evenly distributed along the segment from (0, 1) to

(1, 2). Let Q be
√
n points evenly distributed along the segment from (0,−1)

to (1,−2). For each pair (p, q) ∈ P ×Q, we construct a cubic section R which
contains only points p and q. From p, we shoot a ray at angle −(2/3)π with the
positive x-axis. From q, we shoot a ray at angle (2/3)π with the positive x-axis.
Let v be the point of intersection of these two rays. By our construction, v must
exist. Let R be the unique cubic section including the two sides pv and qv; see
Fig. 4.

Since p and q are vertices of R, then R clearly contains p and q. The other
points of P lie on a tangent of vertex p of R and so they do not lie in R, which
is convex. The same is true of the other points of Q.

It is straightforward to map our points back to the plane z = x+ y and our
cubic sections to the cubes that realize them. Therefore, applying Lemma 17
completes the proof of the theorem.

3.3 Fixed-size cube ranges in R
3

The best known algorithm to multiply
√
n × √

n Boolean matrices runs in
time O(n1.19) [12]. Theorem 18 thus implies it is unlikely that we can ob-
tain a data structure with O(npolylog n) space and O(polylog n) query time for
colored range counting in R

3 when the ranges are arbitrary cubes. Such perfor-
mance can be achieved, however, in the special case where the query cubes are
restricted to be of a fixed size, as we describe next.

Theorem 19. There exists a data structure for fixed-size cube colored range

counting that requires O(npolylog n) space and O(polylog n) query time.

Next we sketch the proof of this theorem. Observe that the duality property
stated as Observation 1 for the square case still applies: a point p ∈ P is in
a query cube C of “radius” r if and only if the center of C is in the cube of
radius r centered at p. Thus the influence region for color k ∈ K is the union
of the radius-r cubes centered at the points in Pk. Boissonnat et al. [5] show
that the union of fixed-sized axis-aligned cubes has linear complexity. It is then
possible to generalize Lemmas 3 and 4, which allows us to reduce counting the

number of influence regions stabbed by the center of a query cube to a constant
number of 3-dimensional dominance range counting queries on the O(n) vertices
of the influence regions. We can perform these dominance range counting queries
using range trees [4], which yields the desired bounds.

4 Experimental Evaluation

We implemented algorithm StripRichness and algorithm TileRichness and we
conducted experiments in order to measure their performance in practice. The
implementations were developed in C++, and all experiments were run on a
workstation with an Intel core i5-2430M CPU. This is a four-core processor
with 2.40GHz per core. The main memory of this computer is 7.8 Gigabytes.
Our implementations run on a Linux Ubuntu operating system, release 12.04.

We used two raster datasets. The first raster stores categorical data and
was extracted from the Harmonized World Soil Database (version 1.2), a raster
that maps soil types over the entire planet [7]. The original raster consists of
43,200 × 21,600 cells, and each cell stores an integer in the range [0, 32000]
representing a soil type. From this dataset we extracted a smaller raster of
11,000 × 11,000 cells, representing an area that includes regions from Europe,
Northern Africa and Western Asia. We refer to the extracted raster as soils.
The number of distinct category values in soils is 7,639. The second dataset
we used is a dem that represents the landscape around mountain Glacier Peak,
Washington state. This dataset was acquired from the U.S. Geological Survey
(USGS) online server [17] and consists of 10,812 × 10,812 cells. Each cell in this
raster stores a floating-point value in the range [25.46, 3284.32]. We processed
the raster by rounding the cell values to integers, yielding a raster with 3,259
different values. We refer to the resulting raster as peak.

In the first experiment, we measured the running time of our implementa-
tions with respect to the size of the input raster, while using a fixed window
size and a fixed maximum number of categories. In particular, for every integer
m ∈ [1, 22] we extracted from soils the raster that starts from the top-left
corner of the dataset and consists of (500m)× (500m) cells. We then fixed the
maximum number of distinct categories that appear in each extracted raster;
we measured the minimum and the maximum value found in the raster, and we
partitioned the interval defined by these two values into K smaller intervals of
equal size. Then, each cell c was assigned a category value i ∈ {1, . . . ,K}, if the
original value of c belonged to the i-th of these intervals. In this experiment,
we fixed the value of K to one hundred. We then ran our implementation of
SquareRichness on each of these rasters with square windows of (2r+1)×(2r+1)
cells, and DiskRichness with disks of radius r, using r = 50. Similarly, from
dataset peak we extracted rasters of (312+500m)×(312+500m) cells for integer
m ∈ [0, 21]. We ran our implementations also on these rasters, using the same
values for parameters K and r. As reference, we also ran the experiments using
two programs (one for square richness and one for disk richness) that compute
the richness values in a naive manner in O(nr2) time. We refer to these two
programs as NaiveSquares and NaiveDisks . The results for this experiment are
illustrated in Fig. 5.

We observe that both SquareRichness and DiskRichness are outstandingly
faster than the naive programs. We also see that DiskRichness performs worse

Raster size (cells)

T
im

e
(s

ec
on

ds
)

10002 30002 50002 70002 90002 110002

50
10

0
15

0
20

0
25

0

SquareRichness
DiskRichness
NaiveSquares
NaiveDisks

Raster size (cells)

T
im

e
(s

ec
on

ds
)

10002 30002 50002 70002 90002 110002

20
0

40
0

60
0

SquareRichness
DiskRichness
NaiveSquares
NaiveDisks

Figure 5: The running times of our implementations on rasters of variable size,
using fixed values for parameters r = 50 and K = 100. Left: the running times
for rasters extracted from soils dataset. Right: the running times for rasters
extracted from peak dataset.

on peak than on soils. This is possibly due to the distribution of category
values in soils. Recall that DiskRichness spends O(|Kout|r+r2) time to process
a tile of r/

√
2×r/

√
2 cells in the raster. Set Kout consists of the category values

whose influence regions overlap with the tile, but no cell in the tile stores any of
these values. Therefore, if the average size of Kout is very small among all tiles
in the raster then the running time converges to O(n). Indeed, for r = 50 the
average size of Kout among the tiles in the entire soils raster is roughly five,
while the corresponding number for peak is roughly 384.5 .

In the second experiment, we measured the performance of our implementa-
tions using windows of variable size, with fixed input size and maximum number
of categories. From each dataset we extracted a raster of 5,500 × 5,500 cells
and we fixed the maximum number of categories in this raster to K = 100. We
then ran our implementations on the resulting rasters for r = 10 + 100×m for
integer m ∈ [0, 26]. Fig. 6 shows the results for this experiment.

0 500 1000 1500 2000 2500

0
10

0
20

0
30

0
40

0
50

0
60

0

r

T
im

e
(s

ec
on

ds
)

SquareRichness
DiskRichness
NaiveSquares
NaiveDisks

0 500 1000 1500 2000 2500

0
10

0
30

0
50

0

r

T
im

e
(s

ec
on

ds
)

SquareRichness
DiskRichness
NaiveSquares
NaiveDisks

Figure 6: The running times of our two implementations using windows of
variable size on a raster of 5,500 × 5,500 cells and with K = 100. Left: the
running times for a raster extracted from soils dataset. Right: the running
times for a raster extracted from peak dataset.

Again, SquareRichness and DiskRichness exhibit remarkable performance
compared to the naive programs, even for the case where r = 10. For larger
values of this parameter, each of the naive programs takes several hours to
execute. On the other hand, the running times of our algorithms decrease as
r becomes larger, especially for DiskRichness . This comes to no surprise since
the time complexity of DiskRichness is O(n(1 +K/r)) in theory. The decrease
is more evident for the peak dataset than for soils. This is possibly again due
to the fact that in soils there is a much smaller number of categories per tile
for which the algorithm computes the partial envelopes, leading to performance
which depends almost entirely on n even for small values of r.

For the last experiment, we ran our implementations using different values
of parameter K, and fixed values for n and r. We ran each of our algorithms
on a raster of 5,500 × 5,500 cells extracted from soils with fixed r = 50 and
K = 100m where m ranges from one to twenty-five. We also ran the algorithms
on a raster of the same dimensions extracted from peak, with r = 50 and
K = 100m for integer m ∈ [1, 32] (the number of category values observed
in the two rasters is different; this number is 2,569 for the raster taken from
soils and 3,259 for the raster taken from peak). Fig. 7 shows the results for
this experiment. This figure does not include any benchmarks for the naive
programs as each program took more than an hour to execute on a single input.

500 1000 1500 2000 2500

0
20

40
60

K

T
im

e
(s

ec
on

ds
)

SquareRichness
DiskRichness

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0
80

0

K

T
im

e
(s

ec
on

ds
)

SquareRichness
DiskRichness

Figure 7: The running times of our implementations for different values of
parameter K, on a raster of size n = 5,500 × 5,500 and with r = 50. Left: the
running times for a raster extracted from soils dataset. Right: the running
times for a raster extracted from peak dataset.

We see that for the rasters produced from peak the performance ofDiskRichness

is affected by K significantly, although this algorithm still has very good per-
formance. We see also a slight increase in the running time of SquareRichness
for these datasets. For soils, the increase in K induces a small increase in the
running time of DiskRichness and does not really affect SquareRichness .

We conclude that our algorithms for categorical richness are practically effi-
cient and behave as expected by theory.

References

[1] F. Aurenhammer. Voronoi diagrams—A survey of a fundamental geometric
data structure. ACM Comput. Surv., 23(3):345–405, 1991.

[2] J. M. Barea-Azcón, B. M. Benito, F. J. Olivares, H. Ruiz, J. Mart́ın, A. L.
Garćıa, and R. López. Distribution and conservation of the relict interaction
between the butterfly Agriades zullichi and its larval foodplant (Androsace
vitaliana nevadensis). Biodiversity and Conservation, 23(4):927–944, 2014.

[3] B. M. Benito, L. Cayuela, and F. S. Albuquerque. The impact of modelling
choices in the predictive performance of richness maps derived from species-
distribution models: Guidelines to build better diversity models. Methods

in Ecology and Evolution, 4(4):327–335, 2013.

[4] J. L. Bentley. Multidimensional divide-and-conquer. Communications of

the ACM, 23(4):214–229, 1980.

[5] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi dia-
grams in higher dimensions under certain polyhedral distance functions.
Discrete & Computational Geometry, 19(4):485–519, 1998.

[6] F. S. de Albuquerque, B. Benito, P. Beier, M. J. Assunção-Albuquerque,
and L. Cayuela. Supporting underrepresented forests in Mesoamerica. Na-
tureza & Conservação, 2015.

[7] FAO, IIASA, ISRIC, and JRC. Harmonized world soil database (version
1.2), 2012.

[8] P. Gupta, R. Janardan, and M. Smid. Further results on generalized inter-
section searching problems: Counting, reporting, and dynamization. Jour-
nal of Algorithms, 19(2):282–317, 1995.

[9] P. Gupta, R. Janardan, and M. Smid. Computational geometry: General-
ized intersection searching. In D. P. Mehta and S. Sahni, editors, Handbook
of Data Structures and Applications. Chapman and Hall/CRC, 2005.

[10] J. J. Hayes and S. M. Robeson. Spatial variability of landscape pattern
change following a ponderosa pine wildfire in northeastern New Mexico,
USA. Physical Geography, 30(5):410–429, 2009.

[11] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin. Efficient colored orthogonal
range counting. SIAM Journal on Computing, 38(3):982–1011, 2008.

[12] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings

of the 39th International Symposium on Symbolic and Algebraic Computa-

tion, ISSAC ’14, pages 296–303, 2014.

[13] K. McGarigal, S. A. Cushman, and E. Ene. FRAGSTATS v4:

Spatial Pattern Analysis Program for Categorical and Continuous

Maps. University of Massachusetts, Amherst, 2012. Available at:
http://www.umass.edu/landeco/research/fragstats/ fragstats.html.

[14] M. Neteler, M. H. Bowman, M. Landa, and M. Metz. GRASS GIS: A
multi-purpose open source GIS”. Environmental Modelling & Software,
31:124–130, 2012.

[15] Q. Shi and J. JaJa. Optimal and near-optimal algorithms for generalized
intersection reporting on pointer machines. Information Processing Letters,
95(3):382–388, 2005.

[16] T. G. Smolinski, M. G. Milanova, and A. E. Hassanien. Applications of

Computational Intelligence in Biology: Current Trends and Open Problems,
volume 122 of Studies in Computational Intelligence. Springer-Verlag Berlin
Heidelberg, 2008.

[17] U. S. G. Survey. The national map viewer and download platform.
http://nationalmap.gov/viewer.html. Accessed: 2015-06-28.

