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ABSTRACT

Many times river floods have resulted in huge catastrophes.
To reduce the negative outcome of such floods, it is impor-
tant to predict their extent before they happen. For this
reason, scientists nowadays use algorithms that model river
floods on digital terrains. Yet, all existing algorithms of this
kind have a major drawback; they cannot efficiently process
massive terrain datasets, which have become widely avail-
able during the last years.

In this paper, we describe two algorithms that provide
high-quality river flood modelling and, unlike any previ-
ous approach, efficiently handle massive terrain data. More
specifically, given a raster terrain and a subset of its cells
representing a river network, we describe two algorithms
that for each cell in the raster estimate the height that the
river should rise for the cell to get flooded. One of the pro-
posed algorithms is a redesign of a European Union approved
method that is used by authorities in Denmark for modelling
river floods. We show how this algorithm can be adapted
to efficiently handle massive terrain data. The other al-
gorithm is a novel method that we introduce for modelling
river floods. For an input raster that consists of IV cells, and
which is so large that it can only be stored in the hard disk
of a computer, each of the proposed algorithms can produce
its output with only O(sort(N)) transfers of data blocks be-
tween the disk and the main memory. Here sort(N) denotes
the minimum number of data transfers that are needed for
sorting a set of N elements stored on disk. We have imple-
mented both algorithms, and compared their output with
data that were acquired from a real flood event. We show
that both algorithms produce an output that models the
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actual event quite accurately. In fact, the new algorithm
that we introduce produces more accurate results than the
existing popular method. We evaluated the efficiency of our
algorithms in practice by conducting experiments on mas-
sive datasets. We show that the two algorithms perform
efficiently even for datasets of approximatelly 268 GB size.

1. INTRODUCTION

Throughout history, river floods have caused large disas-
ters. Usually induced by heavy rainfall, such floods can lead
to casualties and huge financial damage for the local com-
munities. A recent example is the catastrophic flood of the
Indus river in Pakistan that took place in 2010 [6]. This
flood claimed approximatelly two thousand lives, and about
one fifth of the total area of the country ended up covered
by water. Society wants to predict such floods, so that mea-
sures can be taken in advance to reduce the harm done.
Therefore, it is important for people to know which regions
around a river have the highest risk of getting flooded when
the level of the river rises.

Today, hydrologists use computers to model river floods;
they use specialised software to simulate flood events based
on digital representations of terrains and rivers. Such ter-
rain representations are widely known as Digital Elevation
Models (DEMs). The most popular type of DEMs is the so-
called grid or raster DEMs. In a raster DEM the domain
of the terrain is divided into square cells of equal size, and
each cell is associated with an elevation value.

One method for modelling river floods on DEMs is the
method introduced by Berg Sonne [11]; let G be a raster
terrain and let R(G) be the set of cells in G that represents
the region covered by a river network in this terrain. Also,
let = be a positive real. Given G, R(G) and z, the method



estimates which cells in G will get flooded if the level of the
river R(G) rises uniformly by = meters. Of course, a flood
is a very complex phenomenon and is influenced by many
factors, some of which are difficult to determine. Therefore,
we cannot expect that a flood can be modelled precisely
by the output of any method, no matter how involved this
method is. However, the method proposed by Berg Sonne
is today considered a quite accurate tool for modelling river
floods. Hence, after approval by the European Union it is
used by the state authorities of Denmark [11].

However, Berg Sonne’s method has a major drawback; it
cannot process massive DEMs. Recent advances in Lidar
technology have made it possible to produce detailed and
huge DEM datasets. In many cases, such a dataset is so
large that it cannot fit in the main memory of a standard
computer. Hence, the dataset has to be stored mainly on
disk. Since the computer’s processor can only handle data
that appear in the main memory, blocks of data have to
be transfered between the disk and the memory in order to
process the dataset. We call a transfer of a single block of
data between the disk and the memory an I/O-operation,
or an I/O for short. The problem here is that a single I/O
is an extremely slow operation; it can take about the same
time as a million CPU operations. Therefore, when it comes
to processing huge amounts of data, it is important to pro-
cess the dataset in a way that we minimize the number of
data transfers between the disk and the memory. Otherwise,
the whole process becomes practically infeasible. To handle
this issue, Aggarwal and Vitter introduced the so called I/0-
model, which takes into account the number of I/Os between
the disk and the main memory [3]. The performance of an
algorithm in the I/O-model is measured as the number of
I/Os that take place during its execution. This measure
of performance is called the I/O-efficiency of the algorithm.
To describe the I/O-efficiency we need three parameters; the
size N of the input data, the size of the internal memory M,
and the size B of a single block of data that can be trans-
fered from and to the disk. Two basic processes that take
place during the execution of most algorithms is scanning
and sorting. We can scan a set of N elements stored in the
disk with O(scan(N)) I/Os, where scan(N) = N/B. We can
also sort a set of N records in an I/O-efficient manner with
O(sort(N)) 1/Os, where sort(N) = N/Blog,,, 5 N/B [3].

Standard algorithms are often designed based on the as-
sumption that all input data fit in the main memory. Hence,
usually they cannot handle massive datasets. This is also the
case for algorithms that are used to model river floods; to
the best of our knowledge, there does not exist any I/0O-
efficient algorithm for this problem. Therefore, the users
of up-to-date hydrological software are forced to choose be-
tween two approaches. In the first approach, the resolution
of the input DEM is reduced (so it fits entirely in the main
memory). Thus, a large amount of detail in terrain data
is thrown away. Important features on the landscape, such
as ditches and levees, may not be depicted anymore on the
resulting terrain. When it comes to modelling a river flood,
this results in wrong estimations. In the other approach,
users divide the massive DEM into smaller tiles and each
tile is processed independently; in this way, when process-
ing a single tile, we do not take into account how the rest
of the landscape affects the flood in that region. Therefore,
there is a need for developing algorithms that, on one hand
model river floods accuratelly, and on the other hand handle

massive terrain datasets efficiently.

Our Results.

Inspired by the above, we designed two I/O-efficient algo-
rithms that can be used for modelling river floods. The first
algorithm is an adaptation of Berg Sonne’s method that can
handle massive raster terrains. The second algorithm is a
novel method that we introduce for modelling river floods.
For each of these algorithms, the input is a raster G, and a
subset R(G) of cells in G representing the area covered by
a river network. Each of our algorithms returns for each
cell ¢ € G a value f(c), indicating the minimum number of
meters the river level should rise before ¢ gets flooded. We
call this value the resistance value of c. Given the resistance
values f(c) for every ¢ € G, and a positive integer x, we can
then easily extract the part of the terrain that is flooded if
the river level rises uniformly by x meters. Each of the algo-
rithms that we propose uses different criteria for computing
resistance values, hence they produce different outputs. In
the algorithm by Berg Sonne, the resistance value of each
cell is computed in two stages; in the first stage, for each
cell ¢ the elevation difference is computed between c¢ and its
closest river cell (in the zy-plane). We call this elevation
difference the obstruction value of c. In the second stage,
the resistance value of ¢ is computed based on the obstruc-
tion values of the cells that appear on any path connecting
c with the river network. In our new algorithm, we compute
the resistance values by taking into account how water flows
on the terrain surface. In particular, we consider a model
according to which water can flow from a cell to potentially
more than one of its neighbours. Based on this model, we
compute the resistance value of each cell ¢ € G as the ele-
vation difference between ¢ and the highest river cell where
water from ¢ can reach.

We have designed both of our algorithms using the I/0O-
model of Agarwal and Vitter [3]. To compute the resistance
values on a raster that has N cells, each of our algorithms
require O(sort(N)) I/Os in the worst case. We have im-
plemented both algorithms and measured their efficiency in
practice. We show that the two algorithms perform effi-
ciently even for raster datasets of approximatelly 268 giga-
bytes size; to process a dataset of this size on a standard
workstation, our adaptation for Berg Sonne’s method re-
quired roughly 24 hours, and our new algorithm roughly
31 hours. We also conducted experiments to evaluate that
our algorithms can model adequately real flood events. To
do this, we worked as follows; we used as reference a vec-
tor dataset which outlines the river flood that took place in
Pakistan in 2010 [6]. We also used each of our algorithms to
compute the resistance values on a grid that models the ter-
rain in Pakistan. Then we selected a large number of pairs
of cells from this grid; each pair was selected such that one
cell in the pair is covered by the flooded region in the vector
dataset, and the other cell falls outside this region. On the
output of each algorithm, we measured the percentage of
pairs where the flooded cell of the pair scores a lower resis-
tance value than the non-flooded cell. This percentage was
87% for Berg Sonne’s method and 92% for our algorithm.
We repeated the same measurements many times, each time
sampling cell pairs within a different small region overlap-
ping with the flooded area. We observed that the percentage
scored by each method depends on the size of the sampling
region, and the topographic heterogeneity within this region.



The lowest percentages were observed for the sampling re-
gions of the smallest size that we considered; these regions
were squares of 20 km dimension. For such regions, the
mean percentage measured for Berg Sonne’s method is 61%,
and the mean percentage for our algorithm is 71%. For all
region sizes that we used, our algorithm provided on aver-
age more accurate results than Berg Sonne’s method. To
understand the reasons behind this difference in the out-
put quality, we used both algorithms to model river floods
on a massive raster that represents the terrain in Denmark.
Among other artefacts, the method by Berg Sonne produced
flooded regions that had larger size than the ones calculated
by our algorithm. As we explain, one reason for this is that
Berg Sonne’s method produces very small resistance values
for areas along the entire coastline of the terrain.

2. PROBLEM DEFINITION AND NOTATION

Let G be a grid terrain that consists of IV cells. For ev-
ery cell ¢ € G we use h(c) to indicate the elevation of the
terrain at this cell. We denote the cell that appears at the
i-th row and j-th column of G by G(i,7). We assume with-
out loss of generality that the center of grid cell G(4,j) has
zy-coordinates (j,7). For any cell ¢ € G, we denote this
center point by p(c). We call the xy-distance, or simply the
distance, between two cells in G the 2D Euclidean distance
between their cell centers on the zy-domain of G. Let C be
a set of cells in G and let ¢ be a cell that belongs to this set.
We say that c is the closest cell in C to another cell ¢’ if
¢ has the smallest zy-distance to ¢’ compared to any other
cell in C.

We use R(G) to denote a subset of the cells in G that
belong to a river network of the terrain. We call these cells
the river cells of G. The cells in R(G) represent the river
network in G when there is no flood. This implies that the
elevation value of each cell in R(G) approximates the average
height of the river level at this location when no flood occurs.
For the algorithms that we present, we assume that R(G) is
provided as part of the input.

Let hyise be a positive real. We say that there is a river
rise of hrise meters, or that the river rises by hrise meters,
when for each cell ¢ € R(G) the river level rises to eleva-
tion h(c) + hrise. We call hyise the rise value. Thus, when
a river rise takes place we assume that the level of the river
increases by the same amount at all river cells.

We study the following problem. Given a terrain G and
its river network R(G), we want to compute for every cell
¢ € G a value f(c) that estimates the minimum value hyise
such that ¢ gets flooded when the river rises by h,ise meters.
We call this value the resistance value of c. Each of the
two algorithms that we present in this paper defines these
resistance values in a different way; hence, for the same in-
put grid the output between the two algorithms may differ
substantially. For each algorithm. we provide a detailed
definition for the resistance of a grid cell in the description
of the algorithm. For both algorithms, it is assumed that
all river cells are flooded by default. Therefore, for both
approaches we imply that the resistance value of every river
cell is set to zero.

3. DESCRIPTION OF THE ALGORITHMS
3.1 Adaptation of Berg Sonne’s Method

The first algorithm that we describe is based on the flood
modelling method introduced by Berg Sonne [11]. Origi-
nally, this method was designed to solve a more simple prob-
lem than the one that we examine. In particular, the input
of the original method is a raster G, the river network R(G),
and a rise value hyise. Instead of computing flood resistance
values, the method outputs the cells in G that are consid-
ered to get flooded when R(G) rises by hrise meters. We call
this version of the method ProximityFlood. Below, we first
explain how ProzximityFlood calculates the flooded cells in
G for a given rise value hyise. Then, we show how we can
use this method to design an I/O-efficient algorithm that
computes a flood resistance value for each input cell’.

ProximityFlood consists of two steps. In the first step,
every cell ¢ € G\ R(G) gets associated with a single river cell
in R(G); this is the river cell from which we consider that ¢
can potentially get flooded. We call this cell the source cell of
¢, and we denote this by source(c). The source cell for every
c € G\ R(G) is defined as the river cell ¢ € R(G) that has the
smallest zy-distance from c. After calculating source(c) for
every non-river cell ¢, the height difference between source(c)
and c is computed and stored together with c. We call this
value the obstruction value obst(c) of c.

In the second step, we extract the cells in G that are con-
sidered to get flooded when the river rises by hyise meters.
More specifically, we extract any cell ¢ that a) has an ob-
struction value obst[c] < hrise and b) there exists a path of
cells between ¢ and a river cell cg such that any non-river
cell ¢’ in this path has an obstruction value obst(c") < hyise-
Notice that, in this way, not all cells with obstruction < Ayise
are flooded.

Method ProximityFlood can be used to model a single
flood event at a time. On the other hand, if we want to
study which regions get flooded for different rise values then
we have to run this method many times, once for each dis-
tinct rise value hyise. To avoid this, we instead choose to
compute for each cell ¢ the minimum rise value hyise for
which ¢ gets flooded according to method ProzimityFlood.
Below we describe our new I/O-efficient algorithm that does
this, which we call ProximityResistance.

As with ProximityFlood, the new algorithm consists of
two main steps. In the first step, we compute for each
cell c € G \ R(G) the source cell source(c) and the ob-
struction obst(c). In the second step, we calculate the flood
resistance values of all cells in G \ R(G).

Computing the source cells and obstruction values.
For the first step, the main task is to compute the source
cell for each non-river cell ¢; given this cell, it is straight-
forward to compute the obstruction obst(c). Calculating
the source cells in G is similar to computing a Voronoi di-

1Some implementations of ProzimityFlood include an ex-
tra preprocessing step where the heights of the river cells
are adjusted to make it consistent with the rest of the ter-
rain data. This is useful when the river dataset is acquired
from a different source than the terrain raster. In that case,
projecting the river data on the raster may create artefacts
(such as rivers that flow upstream). In the description that
we provide for ProximityFlood we do not include this pre-
processing step; we consider that this step has to do more
with configuring the datasets rather than with the method
itself. Yet, the preprocessing step can be also handled in
an I/O-efficient manner, given a realistic assumption on the
memory size.



agram on the zy-domain of G; the sites of the Voronoi di-
agram are the center-points of the river cells in G and for
any cell c € G \ R(G) it holds that source(c) = ¢ if
the center of ¢ falls in the Voronoi region of p(c’). Com-
puting the Voronoi diagram of the river cells can be done
in O(sort(N)) I/Os [10, 2]. Then, we sweep simultaneously
the diagram and grid G. During the sweep, we maintain the
diagram edges that intersect the sweep line, sorted accord-
ing to the z-coordinate of their intersection point with this
line. For every row of G that we encounter, we scan the
edges that intersect the sweep line to determine the Voronoi
region (and therefore the corresponding source cell) where
each cell in the row belongs to. Notice that the number
of edges in the sweep line cannot be more than two times
the number of cells in a row. This is because there can-
not be more than two river cells on a single column whose
Voronoi regions intersect the same horizontal line. There-
fore, scanning the raster and updating the sweep line can
be done efficiently in O(sort(/N)) I/Os in total. From this
we conclude that computing the source cells on the raster
can be performed in O(sort(N)) I/Os. But we can do this
more efficiently; in the appendix we present an algorithm
that computes the source cells using O(scan(N)) I/Os.

Computing the flood resistance values.

In the second step of method ProximityResistance we
compute for each cell ¢ € @ its flood resistance f(c). Re-
call that for every cell ¢ this resistance value is equal to the
minimum rise value hrise such that obst(c) < hrise and ¢
is connected to the river by a path of cells with obstruction
< hrise- Based on this definition, we can reduce the compu-
tation of the flood resistance values to the problem of com-
puting the raise elevations on a terrain, that was described
by Arge et al. as part of their partial flooding algorithm [8].
This problem is defined as follows; let G be a raster and
let (1, ..., Cx be a set of cells in G that we call sinks. For
any path of cells path in G the height of path is defined as
the height of the highest cell on this path. The raise eleva-
tion of a cell ¢ € G is the minimum height among all paths
that connect c to ¢; forany 1 < i < k. Arge et al. provide
an algorithm that computes the raise elevations for all the
cells on the terrain in O(sort(N)) I/Os [8].

We can reduce the problem of computing the flood re-
sistance values of the cells in G to an instance of the raise
elevation problem as follows; we create a raster G’ that has
the same number of rows and columns as G. For any river
cell G(i,7) € R(G) we let the corresponding cell G’ (i, j) to
be a sink. For any non-river cell G(i,7) we let cell G'(3,7)
have elevation equal to the obstruction value of G(i,7). It
is know easy to see that the raise value of any cell G'(z,5)
is equal to the flood resistance value that we want to com-
pute for G(i,j). By applying the I/O-efficient algorithm of
Arge et al. on G’ we can compute the described flood resis-
tance values in O(sort(N)) I/Os.

THEOREM 3.1. Let G be a raster terrain that consists
of N cells, and let R(G) be the set of all river cells in this
raster. ProximityResistance computes the flood resistance
values of all cells in G using O(sort(N)) 1/Os.

3.2 Our New Method

In ProximityResistance, a cell ¢ can only get flooded
from the closest river cell source(c) in the zy-plane. In-
tuitively, this is very unnatural since the flow of water on

the terrain is obviously influenced by the terrain topogra-
phy. Therefore, we introduce a novel method which instead
chooses source(c) based on a model that represents how wa-
ter flows on the terrain. We refer to this new method as
UpstreamResistance. Below, we first describe how source(c)
is chosen in Upstream Resistance, and then we show how we
can compute this I/O-efficiently.

For a raster G let F(G) = (V, E) be the graph such that for
each cell ¢ € G there exists exactly one vertex v(c) in V, and
there exists a directed edge in E from v(c) to v(c') if cells
¢, € G are adjacent and h(c) > h(c'). We call this graph
the flow graph of G. For now let us assume that no adjacent
cells in G have the same elevation value. Hence, there exists
exactly one directed edge in F(G) for each pair of adjacent
cells in G, and F(G) is a DAG. The concept of the flow graph
was introduced in previous works to model how water flows
between cells on a DEM. It is naturally assumed that water
on a cell can flow only to neighbour cells with lower height;
that is modelled with a directed edge in the flow graph.

For any cell ¢ € G water from ¢ may flow following dif-
ferent routes on the raster until reaching one or more cells on
the boundary of river R(G). In method UpstreamResistance
we choose source(c) to be one of these cells on the river
boundary, that is, the river cells where the water from c
reaches. More formally, let ¢ be a cell in G. Consider a
path in F(G) that starts from vertex v(c) and ends at a ver-
tex v(c’) where ¢’ is a river cell, such that the path does not
contain a vertex corresponding to any other river cell. We
call such a path a downstream path of c. Let DC(c) denote
the set of all river cells that belong to some downstream
path of c. In method UpstreamResistance, source(c) is
the cell in DC(c) with the highest elevation value. The
flood resistance of c is then defined as the height differ-
ence h(c) — h(source(c)).

When it comes to implementing UpstreamResistance 1/0O-
efficiently, the two key tasks for computing the flood re-
sistances are constructing the flow graph F(G), and com-
puting the source cell for every cell in G. If no flat ar-
eas exist on G, we can construct F(G) straightforwardly
in O(scan(N)) I/Os. As for computing the source cells, ob-
serve that for any cell c it holds that source(c) = source(c’)
for some ¢’ such that there exists an edge in F(G) from v(c)
to v(c"). Therefore, we can compute source(c) by first com-
puting the source cells for those neighbours of ¢ that appear
downstream in F(G), and then use these to infer source(c).
Arge et al. describe an I/O-efficient algorithm that com-
putes the number of upstream cells for every cell on a raster
in O(sort(N)) I/Os [4]. Their algorithm can be easily mod-
ified for computing the source cells in G. Therefore, we can
perform this computation in O(sort(N)) I/Os.

Handling flat areas.

Terrain datasets often contain large connected regions of
cells that have exactly the same elevation. Given raster G
that contains such flat areas, we have to perform two extra
steps; first, we have to outline all distinct flat areas in G, and
then we have to model how water flows on each such area.
For the second step, we will have to modify the definition
of the flow graph so as to represent flow between cells in a
flat area. To outline the flat areas in G we have to com-
pute the connected components of cells in the raster that
have the same elevation. This can be done I/O-efficiently
in O(sort(N)) I/Os. Let A C G be a flat area in G, and



let ¢ be a cell on the boundary of A. We say that c is a
spill point of A if c is adjacent to at least one cell that has
elevation lower than h(c). When modelling water flow on A
the goal is to route flow so that every cell in A drains to at
least one spill point of this area (if such a spill point exists).
Let A be a flat area that has at least one spill point. Ev-
ery cell ¢ € A can be routed to all the spill points in A.
Therefore, all cells in A should have exactly the same source
cell and also the same flood resistance. To represent this
appropriatelly, we modify slightly the way we construct the
flow graph such that instead of representing each cell in A
by exactly one vertex, we use a single vertex to represent
the entire flat area. We denote this vertex by v(A). The
in-edges of v(A) connect this vertex with all vertices v(c)
such that ¢ is a cell adjacent to A, and ¢ has a higher ele-
vation than A. Similarly, the out-edges of v(A) connect to
all lower elevation vertices in the graph representing cells
adjacent to A.

After building the flow graph in this manner, we proceed
with the computation of the resistance values. We process-
ing a vertex that represents a flat region A, we distinguish
two cases depending on whether A contains river cells or
not. In the case that A does not contain any river cell, we
find the highest river cell ¢ that appears on a downstream
path from v(A), and for every cell in A we set the flood re-
sistance to the elevation difference between A and c. In the
case that A contains river cells, we consider that all cells in
this area are flooded by default. Hence, for every cell in A
we set the flood resistance value to zero. In that case, ver-
tex v(A) is treated in the flow graph in the same way as a
vertex that represents a single river cell; for each cell ¢ such
that v(A) appears in a downstream path from ¢ we use the
elevation of A to determine the flood resistance of ¢, as if A
was a single river cell.

Note that not all flat areas have a spill point. In that
case, a flat area is a region of locally minimum elevation
in G. Let A be such an area in G. If A does not contain any
river cell then we consider that A corresponds to a spurious
pit. We remove all such pits by raising the elevation of the
terrain within and around this region. The removal of the
spurious pits can be done as a preprocessing step before
constructing the actual flow graph on G. We can do this
I/O-efficiently in O(sort(NN)) I/Os, using the partial flooding
algorithm described by Danner et al. [8]. On the other hand,
if A contains river cells, then we process this area in the same
way as we did with flat areas that contain both river cells
and spill points; the flood resistance of all cells in A are
set to zero, and the entire area is represented by a single
vertex v(A) in the flow graph.

From the above description, we conclude that construct-
ing the flow graph for a raster G boils down to computing
the connected components of flat regions in G, and then
adding in the described way the graph edges between the
vertices of the flat regions and the adjacent cells. We can
compute the connected components of flat regions on G us-
ing the batched union-find algorithm of Agarwal et al. [1]
which uses O(sort(N)) I/Os. Constructing the modified flow
graph, and processing the vertices that represent flat areas
can be done straightforwardly in O(sort(N)) I/Os.

THEOREM 3.2. Let G be a raster terrain that consists of
N cells, and let R(G) be the set of river cells in this raster.
UpstreamResistance computes the flood resistance values
of all cells in G using O(sort(N)) I/Os.

4.IMPLEMENTATIONS AND EXPERIMENTS

We implemented both algorithms described in Section 3
in order to evaluate how fast they perform in practice, as
well as how good they model real flood events.

4.1 Description of Implementations

We implemented both algorithms in C++4, using the open
source library TPIE that provides I/O-efficient algorithms
for sorting and scanning data [13]. We used the GNU g++
compiler (version 4.8.2), and the experiments were ran on a
Linux Ubuntu operating system (release 14.04).

When implementing ProximityResistance we made two
modifications compared to the description in Section 3. First,
when computing the source cells on G using a sweepline ap-
proach, we used the O(scan(N)) approach (described in the
appendix) and we made the practically realistic assumption
that a constant number of rows in G can fit in main memory.
Thus, instead of performing an external scan of each row and
maintaining an I/O-efficient stack during the sweep, we sim-
ply store the two last rows that we swept in memory and per-
form all computations internally. Second, when computing
the raise elevations we did not use the O(sort(N)) batched
union-find algorithm by Agarwal et al. [1] (that is quite in-
volved), but instead a much simpler O(sort(N)log(N/M))
algorithm also proposed by Agarwal et al.. Agarwal et al. [1]
and Danner et al. [8] have showed that this simple union-find
algorithm performs very well in practice.

When implementing UpstreamResistance we accurately
followed the description in Section 3. The only difference
was that we again used the practical union-find algorithm of
Agarwal et al. (that requires O(sort(N)log(N/M)) 1/0s),
this time for computing the connected components of flat
areas in G, and for removing flat areas that correspond to
spurious pits.

4.2 Measuring I/O-Efficiency in Practice

To measure the practical efficiency of each method, we ran
our implementations on a massive raster dataset that repre-
sents the terrain surface of the entire country of Denmark.
Publicly available through the website of the Danish Min-
istry of Environment [7], this raster consists of roughly 66.4
billion cells, arranged in 287500 rows and 231250 columns.
Each cell represents a region of 1.6 x 1.6 meters on the terrain
and is assigned an elevation value which is a 4-byte floating
point number. The total size of the uncompressed dataset
is 268 gigabytes. We refer to this dataset as denmark.

Raster denmark does not include any river data, and there-
fore we had to extract the river cells before conducting the
experiments. To do so, we first preprocessed the raster by
removing all shallow pits. Then, we selected the river cells
based on the size of their upstream area. For this reason,
we computed the flow graph of denmark as described in Sec-
tion 3 except that for each cell ¢ we included at most one
outgoing edge. This outgoing edge points to the vertex v(c’)
such that ¢’ is a neighbour of ¢ and the vector from p(c)
to p(c’) has the steepest downward slope. Then, we com-
puted for each cell ¢ the size of its upstream area; this is
the area that is covered by all cells ¢’ such that there exists
a path from v(c') to v(c) in the flow graph. We extracted
the river cells by selecting all cells whose upstream area was
larger than 12.5 km?. We picked this threshold since the
resulting river network resembles better the actual shape of
the rivers in Denmark, according to available orthophotos.



We ran both of our algorithms on the denmark raster and
the extracted cells, using a workstation that has a Xeon
CPU (W3565), a four-core processor with 3.2GHz per core.
The workstation had 48 Gigabytes of main memory, and a
raid (redundant array of independent disks) that consists
of nineteen disks, with 3 Terrabytes capacity in total. The
maximum amount of main memory that was available at
any point during the execution of our implementations was
22 Gigabytes. The total time taken by the implementa-
tion of ProximityResistance was roughly 24.2 hours; only
2.4 hours was used for computing the source cell for each
non-river cell, and the rest 21.8 hours were spent on com-
puting the resistance values. For the implementation of
UpstreamResistance, the total execution time was approxi-
matelly 31.1 hours. The first stage of this method, where the
flow graph of the input raster is computed, took 12.5 hours.
The rest 18.6 hours were spent for delineating the flat areas
on the terrain, and computing the resistance values.

From the above, it is clear that the implementations of
both methods have a very good performance even for an
enormous dataset such as denmark. Each method took less
than one and a half day to process this dataset, using an
amount of main memory which corresponds to roughly 8%
of the datasets total size.

4.3 Evaluating the Quality of Flood Modelling

In the second set of experiments we used an actual flood
event to evaluate the quality of the output produced by the
two methods, namely the catastrophic flood of the Indus
river that took place in Pakistan in 2010 [6].

For the experiments we used a raster terrain extracted
from the SRTM grid, a DEM that represents the earth sur-
face from 60° North to 56° South [12]. The extracted raster
covers a square region of approximately 2160x2160 kilome-
ters and includes the entire Indus river basin—see Fig. 1. The
raster consists of 24,000x24,000 cells, and the dimension of
each square cell is approximately 90 meters. We refer to this
dataset as indus.

Since the indus DEM does not contain any river data,
we extracted the river cells based on the upstream area of
each cell, in the same way as we did for the denmark dataset
in Section 4.2. In this case we used an upstream area of
300 km? since it produces a visual result that matches the
shape of the local river network, as it appears in orthophotos
acquired when there was no flood in the region.

To evaluate the ability of our algorithms to accurately
model floods, we used a vector dataset that shows the actual
flooded regions around the river during the Indus river flood.
This dataset was released by the Dartmouth Flood Obser-
vatory, and contains data acquired with MODIS (Moderate-
resolution Imaging Spectroradiometer) technology [9]. We
refer to this dataset as flood. The flood dataset was con-
structed based on several satellite photos of the Indus region,
acquired during the period from the 1st to the 5th of August
of 2010. It represents with polygons all the regions that were
flooded in at least one day during this period. The bounding
box of flood covers a rectangular region that spans approx-
imatelly 1118 and 911 kilometers on the langitudinal and
the longitudinal axes respectively. It contains 4294 poly-
gons, and the total area covered by these polygons is ap-
proximatelly 30483 km?. Refer to Fig. 1.

We ran the implementations of ProximityResistance and
UpstreamRestistance algorithms on the indus DEM and

the extracted river cells, and we evaluated the output of each
algorithm using a method that resembles the Area-Under-
the-Curve (also known as AUC) measure, which is one of
the most popular measures for model testing [5]. In par-
ticular, we overlayed flood with indus and extracted the
cells in indus whose centers lie in the interior of a poly-
gon in flood. We refer to these cells as the flooded cells
of indus. In total, we identified 4045544 flooded cells. Next
we selected at random a large set of pairs of cells. Each pair
was selected so that it consists of one flooded cell and one
non-flooded cell. We denote this set of pairs by P. For each
of our methods, we determined for each pair pr € P if
the flooded cell in pr scores a higher resistance value than
the non-flooded cell, and calculated the percentage of the
pairs in P for which this condition holds. We call this per-
centage the output quality of the method. The value of the
output quality is an estimation of the AUC measure; the
output quality value is equal to the AUC if P consists of
all possible pairs of flooded/non-flooded cells in the region
of interest. For our study, we chose 10° pairs, consider-
ing that this is a sufficient number for estimating the value
of the AUC. For method ProximityResistance the output
quality is 87%, while for UpstreamResistance the output
quality is 92%. This shows clearly that both of the methods
produce flood resistances that are highly consistent with the
actual event.

To measure how the two methods perform on a more lo-
cal scale, we calculated their output quality within several
smaller regions. More specifically, within the xy-region cov-
ered by flood we extracted three sets of square windows,
each set consisting of windows of certain size. In the first
set each window is a square with dimension 20 km, in the
second set each window has dimension 40 km, and the third
set consists of windows of 80 km dimension. The windows of
each set were picked in the following way. Within the region
covered by flood we extracted at random 500 windows of
the same size. Then we used a greedy algorithm to select a
subset of these windows, so that there is no pair of windows
in the subset that overlap with each other, and so that each
window contains at least 500 flooded and at least 500 non-
flooded cells. Thus, we ended up with a subset of 119 win-
dows for the first set, and forty-five and twenty-two windows
for the second and third set respectively. From each window,
we selected 10° cell pairs, again so that each pair contains
one flooded and one non-flooded cell. We then calculated the
output quality of our methods for each window. Figure 4.3
shows the results for the windows of 20 km dimension, where
the mean output quality was 61% for ProximityResistance
and 71% for UpstreamResistance. For windows of 40 km di-
mension, ProximityResistance attained mean output qual-
ity 69% and Upstream Resistance mean output quality 81%.
For the third set of windows, the values were 76% and 85%,
respectively.

Therefore, for each window size Upstream Resistance has
higher mean output quality than ProximityResistance. For
both methods the output quality increases as the window
size becomes larger. Yet, we observed that for all examined
window sizes, there exist windows were at least one of the
methods has an output quality value of less than 50%.

To examine the above further, we investigated if there is
a correlation between the output quality values and the two
following factors: heterogeneity of the terrain (variability
of elevation values) and the number of flooded cells inside



Figure 1: (a) An illustration of the indus DEM together with the flood vector dataset. The cells of the DEM
appear in grayscale colours, shaded according to their elevation values; cells of higher elevation are indicated
by lighter shades. The polygons of the flood dataset appear in red colour. (b) A closer view of the flooded
regions.
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Figure 2: The locations for the selected windows of 20 km dimension. In each subfigure, a window is
represented by a colored box. Each box is colored according to the output quality value achieved by one of
the methods for the corresponding window. The relative size of the boxes in the figure is larger than the
size of the original windows. We did this to make the color of each box more visible. The xy-regions of the
original windows do not overlap with each other. Left: boxes colored based on the output quality values for
ProximityResistance. Right: boxes colored according to the output quality values of UpstreamResistance.

each window. To measure the heterogeneity of the terrain
within each window w, we computed the logarithm of the
standard deviation for the elevations of the cells in w. We
call this value the topographic heterogeneity of w. In order
to examine visually the relation between the output qual-
ity and the topographic heterogeneity among the different
windows, we created a scatter plot for each method. Each

scatter plot contains a 2-dimensional point p(w) for every
window w; the horizontal coordinate of p(w) is equal to the
topographic heterogeneity of w, and the vertical coordinate
of this point is equal to the output quality of the method for
w. Figure 4.4 shows the scatter plots that we produced for
windows of 20 km dimension. In a similar way, we created
a scatter plot for each method where the horizontal coor-



dinates of the presented points are equal to the number of
flooded cells in the windows that we examine. These scat-
ter plots appear also in Figure 4.4. It becomes evident that
both of the methods score higher output quality values for
windows of intermediate topographic heterogeneity. Most of
the low output quality values appear on windows of small
heterogeneity. Regions that consist mainly of flat areas be-
long to this category. Also, there does not appear to be any
relation between the output quality of the methods and the
number of flooded cells within each window. The visualisa-
tions that we produced for the windows of larger size showed
similar patterns.

4.4 Comparing the Output of the Methods

To gain more insight about ProxzimityResistance and
UpstreamResistance, we visually examined the output that
the two methods produced for the denmark dataset. During
this examination, for various rise values p we extracted the
regions in the output of each method which consisted of all
cells with flood resistance < p. The first observation we
made was that for the same rise value the size of the flooded
area that appears in the output of ProximityResistance is
larger than in the output produced by Upstream Resistance.
Refer to Figure 4(a) and Figure 4(b). One of the reasons
that contributes to this difference is how the two meth-
ods estimate river floods around coastlines; in the output
of ProximityResistance, almost the entire coastline of the
terrain appears flooded even for very small rise values. Refer
to Figure 4(c). We can explain this as follows. Recall that
with ProzimityResistance a cell ¢ gets flooded for a rise
value p if a) this cell has a height difference < p from the
closest river cell on the zy-domain (the obstruction value),
and b) if there is a path from ¢ to any river cell such that
the obstruction values of all cells in the path is < p. The
terrain cells which appear close to the coastline have low
height values, since they lie almost on the sea level. There-
fore, for each such cell the height difference from the closest
river cell is either very small or negative, which means that
the coastline constitutes a path of cells that connects to the
river and all cells in this path have very low obstruction val-
ues. As a consequence, even for small rise values all cells in
this path are flooded when using ProximityResistance. On
the other hand, in the output of the UpstreamResistance
method, coastlines do not appear flooded even for large rise
values. The reason is that for a coastline cell there is usually
no flow path that connects this cell with a river cell. Hence,
cell ¢ can not get flooded whichever the river-rise value. We
also observed one more artefact in the output of method
ProximityResistance; in some cases, this method produces
flooded regions with long linear boundaries that do not cor-
respond to actual obstacles on the elevation profile of the
terrain. Refer to Figure 4(d). These artefacts are the re-
sult of assigning obstruction values to non-river cells based
on the Voronoi diagram of the river cells on the zy-domain
of the terrain. In an area that extends between two differ-
ent river streams, this step may produce two regions of cells
that have a large difference in their obstruction values. The
boundary between these two regions follows the boundaries
between Voronoi regions of river cells that belong to differ-
ent streams. As a consequence, for certain rise values there
appear flooded areas in the output whose boundary follows
the boundary between the Voronoi regions of the river cells.
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Figure 3: Scatter plots that show the relation between the output quality of each method and two features of
the examined windows. Each point corresponds to a window of 20 km dimension. Top: The relation between
output quality and topographic heterogeneity. Bottom: The relation between output quality and the number
of flooded cells in each window.



(c)

Figure 4: An illustration of the outputs of ProximityResistance and UpstreamResistance for the denmark dataset.
Flooded regions are indicated by dark blue color. (a) The output of the ProximityResistance around Hadsund
town (north-east Jutland) for a rise value of half a meter. (b) The output of UpstreamResistance for the same
region and rise value. (c) The output of ProximityResistance close to Vejle city with a rise value of just one
milimeter. The entire coast appears flooded, with wide flooded areas at certain places. (d) The output of
the ProrimityResistance on a region with several river streams, for a rise value of 2.8 meters.



APPENDIX

In Section 3.1 we claimed that, given a grid G and the set of
river cells R(G) on this grid, we can compute for every cell
¢ € G its source cell using only O(scan(NN)) I/Os. Recall that
the source cell of ¢ is the cell in R(G) that has the closest
zy-distance to c. Next we describe in detail how we can do
this computation while achieving the claimed performance
bound.

Instead of computing explicitly the Voronoi diagram of
centers of the cells in R(G), we use a simpler approach. For
every cell ¢ = G(4,7) we compute three cells: The closest
river cell G(k, 1) such that k < 4, the closest river cell G(k’,1")
such that k' > i, and the closest river cell G(k”,1") such that
k" = i. We indicate these cells by source«(c), sources (c),
and source—(c), respectively. Obviously, one of these three
cells is the source cell of ¢; given those cells we can de-
termine source(c) by simply comparing their xy-distances
from c. We can calculate these three cells for every cell in G
in O(scan(N)) I/Os using a sweep-line technique. Next we
show how we can do this for source<(c) and source—(c); the
process for computing sources (¢) is quite similar to the one
for source< (c).

Let row(z) denote the i-th row in G, where row(1) is the
bottom row in the raster. Let VD(i) indicate the Voronoi
diagram on the zy-domain of G where the sites are the
centers of all river cells G(k,l) such that k < i. For ev-
ery cell ¢ € row(i), the cell source<(c) corresponds to the
site in VD(i) whose Voronoi region contains the center of c.
Based on this observation, to compute source< (c) for every
cell ¢ € G we scan G row by row, starting from the bot-
tom row of the raster. During this process, we maintain a
sweepline [, parallel to the y-axis. When we process row (i),
we consider that the sweepline has the same y-coordinate
as the centers of the cells of this row. We use [5(7) to indi-
cate the sweepline at that moment. Line [,(¢) intersects the
Voronoi regions of certain sites in VD(¢) and is thus subdived
into horizontal segments, each contained in a different re-
gion. To represent this we compute a list of points L;; these
are the intersection points between [5(i) and the voronoi
boundaries of the sites that appear below I,(7). With every
point p € L; we also store at most two river cells rcies: (p)
and 7cright(p). Cell reiere (p) is the river cell whose Voronoi
region intersects Is to the left of p, while 7¢rignt(p) is the
river cell whose Voronoi region intersects s to the right of
this point. The points in L; are stored in order of increasing
z-coordinate. Given the list L;, it is easy to compute the
source cells for every cell ¢ in row(4); we scan this row and
L; simultaneously, while keeping track of the cell centers in
row(4) that fall inside the Voronoi region delimited by two
consecutive points in L;.

Computing L; for each row is a bit more involved. We
can do this efficiently as follows; to calculate the elements
in L; we look at the list L;—1 that we computed for the
previous row. First, we construct an intermediate list Ltemp
that has a structure similar to L; except that it stores the
intersections points between Is(i) and the Voronoi regions
in VD(i — 1). Then, we update this intermediate list so
that also the regions of the sites in row(i — 1) are taken into
account.

To construct Liemp We need to find where the boundaries
of the Voronoi regions of VD(i — 1) intersect I5(z). To do so
for every region boundary that intersects ls(¢ — 1) we could
simply compute where this boundary intersects I5(7). How-

ever, not all region boundaries in VD(i — 1) that intersect
ls( — 1) intersect also Is(4); this is the case when there exist
regions in VD(i — 1) whose y-span ends somewhere between
ls(7) and Ils(¢ — 1). This can be handled in the following
way; we scan list L;—1 and we maintain an I/O-efficient
stack ST that stores are the bisectors between Voronoi sites
in VD(i — 1) whose regions potentially intersect /5(z). More
specifically, let pcurr be the element that is currently scanned
in L;_1. We maintain the invariant that ST stores the bisec-
tors for only those sites in VD(i — 1) whose Voronoi regions:
a) intersect ls(i — 1) to the left of peurr, and b) would inter-
sect I5(7) if we did not consider the sites in VD(: — 1) whose
regions intersect Is(i — 1) to the right of p. We also maintain
that for any two lines /; and l2 in the stack, line [; is stored
below Iz if and ony if I1 crosses s(i) to the left of lo. With
each line [ that we store in ST we also maintain the two sites
reefs (1) and rcrigns (1) for which [ is the bisector. Initially ST
is empty. Recall that pcurr is the intersection point between
the sweepline Is(i—1) and the bisector line of two neighbour-
ing sites rcieft(p) and reright(p). Let lpisect be this line for
Peurr, the element currently processed in L;—1. Let top(ST')
indicate the bisector currently stored at the top of the stack
ST. We compute the intersection point between lpisect and
top(ST); if this point has a y-coordinate that falls above
l5(i), or below Is(i — 1) we push lpisect into the stack and
we continue with the next element in L;_;. Otherwise, we
compute the bisector between rcies (top(ST')) and rcrigns (p)
and we set lpisect to represent this line. Then, we remove
the line at the top of the stack and compute the intersection
point between the current lnisect and the line that is now
stored top(ST). We repeat this process until either Ilpisect
and top(ST') intersect at a point above I () or below I5(i—1),
or ST becomes empty. It is easy to prove that after process-
ing all the elements in L;_1, stack ST stores the support
lines of exactly those Voronoi boundaries in VD(i — 1) that
intersect Is(4).

Given the data stored in ST we can easily construct the
intermediate list Ltemp; recall that this is the list that stores
the intersection points between [5(7) and the bisectors of the
Voronoi regions in VD(i — 1). To construct L;, we then
process Liemp together with the river cells in row(i — 1).
First, we compute the Voronoi diagram of the river cells in
row (¢ — 1); this diagram is trivial to compute since all sites
have the same y-coordinate, and the bisectors between the
Voronoi regions are lines parallel to the y-axis. For each river
cell ¢ in row(i—1) we compute the interval which corresponds
to the z-span of the Voronoi region of ¢ in this diagram. We
store each such interval together with corresponding cell in
a list Lint, in increasing order of the z-coordinates of their
endpoints. Next, we use the intervals in Lin and the infor-
mation stored in Liemp in order to compute the elements of
L;, the intersection points between the river cells in VD(3)
and [;(¢). For this, we need to partition /(i) into intervals,
such that each interval corresponds to the intersection of
ls (i) with a Voronoi region in VD(i). Each such interval is
either a subset of an interval in Lint, or a subset of an interval
represented by two consecutive elements in Lemp. There-
fore, we can compute L; by simultaneously scanning Ltemp
and Lint, and substituting, inserting, or deleting points from
L¢emp using the information stored in Lint.

Let k be the number of cells in a single row of G. From the
above description, we conclude that constructing each list L;
requires O(scan(k)) 1/Os since we need to scan row(i — 1),



list L;—1, and Ltemp a constant number of times. We also
have to insert and extract at most O(k) elements to and
from the I/O-efficient stack ST. We can insert or extract
a single element from such a stack in O(1/B) I/Os, which
sums up to O(scan(k)) I/Os for processing all cells in a row.

Processing L; to determine the values source< also re-
quires one scan, which adds up in total to O(scan(N)) 1/Os
for handling the corresponding lists for all rows in G.

Computing source=(c) is a simple task; let ¢ be any cell in
G, and let r be the row in G which contains c. Cell source=(c)
is either the closest river cell on r that appears on the left
side of ¢, or the closest river cell from the right side of c.
Therefore, to determine source=(c) we scan each row of G
independently, and for each cell that we are currently scan-
ning we keep track of the nearest river cell from each side on
this row. Hence, we can compute cell source—(c) for every
cell ¢ € G in O(scan(N)) I/Os. From the above description,
we conclude that we can compute sources (c), source<(c),
source=(c), and therefore the source cell source(c) for every
cell c € G\ R(G) in O(scan(N)) I/Os.



