
OnlineMin: A Fast Strongly Competitive

Randomized Paging Algorithm

Gerth Stølting Brodal∗,† Gabriel Moruz‡,§

Andrei Negoescu‡,¶

Abstract

In the field of online algorithms paging is one of the most studied
problems. For randomized paging algorithms a tight bound of Hk on
the competitive ratio has been known for decades, yet existing algorithms
matching this bound have high running times. We present a new random-
ized paging algorithm OnlineMin that has optimal competitiveness and
allows fast implementations. In fact, if k pages fit in internal memory the
best previous solution required O(k2) time per request and O(k) space.
We present two implementations of OnlineMin which use O(k) space,
but only O(log k) worst case time and O(log k/ log log k) worst case time
per page request respectively.

1 Introduction

Online algorithms are algorithms for which the input is not provided beforehand,
but is instead revealed item by item. The input is to be processed sequentially,
without assuming any knowledge of future requests. The performance of an
online algorithm is usually measured by comparing its cost against the cost of
an optimal offline algorithm, i.e. an algorithm that is provided all the input
beforehand and processes it optimally. This measure, denoted competitive ra-
tio [15, 19], states that an online algorithm A has competitive ratio c if for any
input sequence its cost satisfies cost(A) ≤ c · cost(OPT ) + b, where cost(OPT )
is the cost of an optimal offline algorithm and b is a constant. If A is a ran-
domized algorithm, cost(A) denotes the expected cost. In particular, an online
algorithm is denoted strongly competitive if its competitive ratio is optimal.

∗MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National
Research Foundation.

†Department of Computer Science, Aarhus University. Åbogade 34, 8200 Aarhus N, Den-
mark. Email: gerth@cs.au.dk.

‡Institut für Informatik, Goethe-Universität Frankfurt am Main, Robert-Mayer-Str. 11-15,
60325 Frankfurt am Main, Germany. Email: {gabi,negoescu}@cs.uni-frankfurt.de.

§Partially supported by the DFG grants ME 3250/1-3 and MO 2057/1-1, and by
MADALGO.

¶Partially supported by DFG grant ME 3250/1-3 and by MADALGO.

1



While the competitive ratio is a quality guarantee for the cost of the solution
computed by an online algorithm, factors such as space complexity, running
time, or simplicity are also important.

In this paper we study paging algorithms, a prominent and well studied ex-
ample of online algorithms. We are provided with a two-level memory hierarchy,
consisting of a cache and a disk, where the cache can hold up to k pages and the
disk size is infinite. When a page is requested, if it is in the cache a cache hit
occurs and the algorithm proceeds to the next page. Otherwise, a cache miss
occurs and the algorithm has to load the page from the disk; if the cache was
full, a page must be evicted to accommodate the new one. The cost is given by
the number of cache misses performed.

Related work. Paging has been extensively studied over the last decades.
In [7] an optimal offline algorithm, denoted MIN, was given. In [19] a lower
bound of k on the competitive ratio for deterministic paging algorithms was
shown. Several algorithms, such as LRU and FIFO, meet this bound and are
thus strongly competitive. For randomized algorithms, Fiat et al. [10] proved

a lower bound of Hk on the competitive ratio, where Hk =
∑k

i=1 1/i is the
k-th harmonic number. They also gave an algorithm, named Mark, which
has a competitive ratio of (2Hk − 1). The first strongly competitive random-
ized algorithm being Hk-competitive was Partition [18]. For Partition, the
memory requirement and runtime per request can reach Θ(n), where n is the
number of page requests, and n can be far greater than k. Partition was
characterized in [1] as counter-intuitive and difficult to understand. The natu-
ral question arises if there exist simpler and more efficient strongly competitive
randomized algorithms. The Mark algorithm can be easily implemented using
O(k) memory and has very fast running time (O(1) dictionary operations) per
request, but it is not strongly competitive. Furthermore, in [9] it was shown
that no Mark-like algorithm can be better than (2Hk − 1)-competitive. The
strongly competitive randomized algorithm Equitable [1] was a first break-
through towards efficiency, improving the memory complexity to O(k2 log k)
and the running time to O(k2) per page request. In [6] a modification of Equi-
table, denoted Equitable21, improved the space complexity to O(k). Both
Equitable algorithms are based on a characterization in [16] in the context of
work functions. The main idea is to define a probability distribution on the set of
all possible configurations of the cache and ensure that the cache configuration
obeys this distribution. For each request, it requires k probability computations,
each taking O(k) time. For a detailed view on paging algorithms, we refer the
interested reader to the comprehensive surveys [2, 8, 11].

Our contributions. In this paper we propose a strongly competitive random-
ized paging algorithm, denoted OnlineMin. We first propose an implementa-
tion for it which handles a page request in O(log k) worst case time, and then

1In [6] Equitable2 is denoted Ak. Due to its similarity to Equitable we use its original
name of Equitable2.

2



we improve this implementation to achieve O(log k/ log log k) time in the worst
case for processing a page request. This is a significant improvement over the
fastest known strongly competitive algorithm, Equitable, which needs O(k2)
time per request2. The space requirement of both our implementations is O(k),
due to the forgiveness technique used in Equitable2.

The main building block of our algorithm is a priority based incremental
selection process starting from the same characterization of an optimal solution
in [16] as the Equitable algorithms. The analysis of this process yields a simple
cache update rule which is different from the one in [1, 6], but leads to the same
probability distribution of the cache content. A straightforward implementation
of our update rule requires O(k) time per request. Additionally we design
appropriate data structures that result in two more efficient implementations:
the first implementation uses simple pointer-based data structures to achieve
O(log k) worst case time per page request, whereas the second implementation
exploits the power of the RAM model to achieve O(log k/ log log k) worst case
time per request.

2 Randomized Selection Process

In this section we recall the notions of offset functions for paging algorithms in-
troduced in [16]. We then describe in Section 2.2 a new priority based selection
process which is the basis of our algorithm OnlineMin. We analyze the selec-
tion process in order to obtain a simple page replacement rule which remains at
all times consistent with the outcome of the selection process. Finally, in Sec-
tion 2.3 we prove equivalences between the cache distribution of our selection
process and the Equitable algorithms [1, 6], which implies that OnlineMin

is Hk-competitive.

2.1 Preliminaries

Let σ be the request sequence so far. For the construction of a competitive
paging algorithm it is of interest to know the possible cache configurations if σ
has been processed with minimal cost. We call these configurations valid.

For fixed σ and an arbitrary cache configuration C (a set of k pages), the
offset function ω for σ assigns C the difference between the minimal cost of
processing σ ending in configuration C and the minimal cost of processing σ.
Thus C is a valid configuration after processing σ iff ω(C) = 0. In [16] it was
shown that the class of valid configurations V determines the value of ω on any
configuration C by ω(C) = minX∈V{|C \X |}.

Koutsoupias and Papadimitriou [16] showed that ω can be represented by a
sequence of k + 1 disjoint page sets (L0, L1, . . . , Lk), denoted layers, which can
be constructed as follows3. Initially each layer Li, where i > 0, consists of one

2Since no explicit implementation of Equitable2 is provided, due to their similarity we
assume it to be the same as for Equitable.

3We use a slightly modified, yet equivalent, version of the layer representation in [16].

3



of the first requested k pairwise distinct pages. The layer L0 contains all pages
not in L1, . . . , Lk. Since the offset function ω depends on the input sequence it
has to be updated after each request. If ω is the offset function for input σ and
page p is requested next, we denote by ωp the offset function which results for
the input σp and update the layers as follows4:

ωp =

{

(L0 \ {p}, L1, . . . , Lk−2, Lk−1 ∪ Lk, {p}) if p ∈ L0,

(L0, . . . , Li−2, Li−1 ∪ Li \ {p}, Li+1, . . . , Lk, {p}) if p ∈ Li, i > 0.

In [16] the relationship in Lemma 1 between the layer representation of ω
and the class of valid configurations V was given.

Lemma 1 If (L0, . . . , Lk) is a layer representation of an offset function ω, then
a set C of k pages is a valid configuration, i.e. ω(C) = 0, iff |C ∩ (∪i≤jLi)| ≤ j
for all 0 ≤ j ≤ k.

We give an example of an offset function for k = 3 in Figure 1. The support
of ω is defined as S(ω) = L1 ∪ · · · ∪ Lk. In the remainder of the paper, we
call a set with a single element singleton. Also, let u be the smallest index
such that Lu+1, . . . , Lk are all singletons. We distinguish two sets: the set
of revealed pages R(ω) = Lu+1 ∪ · · · ∪ Lk, and the set of unrevealed pages
N(ω) = L1 ∪ · · · ∪ Lu. A valid configuration contains all revealed pages and no
page from L0. Note that when requesting some unrevealed page p in the support,
we have R(ωp) = R(ω) ∪ {p} and the number of layers containing unrevealed
items decreases by one. Moreover, if p /∈ L1 then N(ωp) = N(ω) \ {p} and
otherwise N(ωp) = N(ω) \ L1. Also, the layer representation is not unique
and especially each permutation of the layers containing revealed items describes
the same offset function.

Equitable, Equitable2 and the forgiveness technique. Given the layer
representation of ω by the sequence requested so far, a probability distribution
over all possible actual cache configurations was proposed in [1]. The probability
that C is the cache content is defined as the probability of being obtained at
the end of the following random process: Starting with C = R(ω) a page p is
selected uniformly at random from N(ω), p is added to C, and ω is set to ωp.
This process is iterated until C has k pages. A page replacement strategy that
maintains this probability distribution under the constraints that 1) it replaces
one page only upon a cache fault and 2) the cache content does not change upon
a cache hit, was shown to be Hk-competitive [1] . The authors also provide the
randomized algorithm Equitable which handles a page request in O(k2) time
and achieves the desired distribution under both constraints.

Note that by repeatedly requesting pages from L0 the amount of pages in
the support increases. In order to reduce the space requirements forgiveness

4For easiness of exposition we refer by ω to both the offset function and its corresponding
layer representation.

4



techniques can be applied, which use an approximation of the offset function
in order to cap the support size. The intuition behind these techniques is that
a large support implies that the adversary did not play optimally and there is
a large gap between the actual ratio and the worst case ratio of Hk. This gap
cannot be closed by the adversary with future requests, and thus allows the
online algorithm to deviate from the original layer update rule when tracking
the offset function, while still preserving the Hk-competitiveness.

Given an offset function ω, both Equitable and Equitable2 have iden-
tical cache distributions. The difference consists in the forgiveness steps, more
precisely they have different update rules for the offset function ω, when the
support becomes too large. If the support size reaches a threshold Equitable

uses an approximation of the current offset function in order to bound the sup-
port size by O(k2 log k). Equitable2 uses an improved forgiveness step leading
to space requirements of O(k). More precisely whenever the support contains 3k
pages and a page p is requested from L0, Equitable2 adds p to L1 and handles
the update of ω as p would have been requested from L1.

Definition 1 Given the current offset function ω = (L0, . . . , Lk) and the page
request p, the update rule for ω including the forgiveness step of Equitable2

is as follows

ωp =







(L0 \ {p}, L1, . . . , Lk−2, Lk−1 ∪ Lk, {p}) if p ∈ L0, |S(ω)| < 3k,

(L0 \ {p} ∪ L1, . . . , Lk−2, Lk−1, Lk, {p}) if p ∈ L0, |S(ω)| = 3k,

(L0, . . . , Li−2, Li−1 ∪ Li \ {p}, Li+1, . . . , Lk, {p}) if p ∈ Li, i > 0.

Note that by the given update rule the layers L1, . . . , Lk contain each at
least one element. Thus in the case |S(ω)| = 3k the support size decreases by
|L1| ≥ 1 and increases by 1 (the requested page p), and therefore we always
have |S(ω)| ≤ 3k. In [6] it was shown that applying this update rule for ω still
leads to a competitive ratio of Hk.

2.2 Selection process for OnlineMin

If ω is the offset function for the input requested so far, an online algorithm
should have a configuration similar to the cache COPT of an optimal strategy.
We know that COPT contains all revealed items and no item from L0. Which
non-revealed items are in the cache depends on future requests. To guess the
order of future requests of non-revealed items OnlineMin assigns priorities to
pages when they are requested. It maintains the cache content of an optimal
offline algorithm under the assumption that the priorities reflect the order of
future requests. We introduce a priority based selection process for the layer
representation of ω. Assuming that each order of priorities has equal probability,
we prove that the outcome of the selection process has the same probability
distribution as the Equitable algorithms. Our approach allows an efficient
and easy-to-implement update method for the cache of OnlineMin, which is
consistent with our selection process.

5



4 4

5
6 6

4

2 3 12 3 32

3 2

0

5 5

4

5

0

2 4

1

5 6 1

6 6
1

5 5

3 4 5

1

6 1 2

6

2

6 6
1 1

0

1 23 4 6

1 1 1
2 2

1 2 3 10 2 3 32

1 2 4 53 6 6

0 1

1 3 62 4 5 5

0

1 3 2 4 6 5

2 2 2
4 4

5

1

2
5 5

6

4 4

C3C2C1C0 C3C2C1C0C3C2C1C0

C3C2C1C0 C3C2C1C0C3C2C1C0

Figure 1: Example for updating the layers L0, . . . , Lk and the selection sets
C0, . . . , Ck for k = 3. The initial cache configuration is {2, 4, 5}. The request
sequence is (6, 5, 1, 2, 5) and the priority of a page is its number.

In the following we assume that pages from L1, . . . , Lk have pairwise distinct
priorities. For some set S we denote by minj (S) and maxj (S) the subset of S
of size j having the smallest and largest priorities respectively. Furthermore,
min(S) = min1 (S) and max(S) = max1 (S).

Definition 2 We construct iteratively k + 1 selection sets C0(ω), . . . , Ck(ω)
from the layer partition ω = (L0, . . . , Lk) as follows. We set C0(ω) = ∅ and for
j = 1, . . . , k we set Cj(ω) = maxj (Cj−1(ω) ∪ Lj).

When ω is clear from the context, we let Ci = Ci(ω). For a page request p
and offset function ω = (L0, . . . , Lk), denote ωp = (L′

0, . . . , L
′
k) and let C′

k be
the result of the selection process on ωp. By the layer update rule each layer
contains at least one element and the following result follows immediately.

Fact 1 |Cj | = j for all j ∈ {0, . . . , k}. If |Lj| is singleton then Cj = Cj−1 ∪Lj.
Moreover, all revealed pages are in Ck.

Updating Ck. We analyze how Ck changes upon a request. First we give
an auxiliary result in Lemma 2 and then show in Theorem 1 that C′

k can be
obtained from Ck by at most one page replacement. We get how C′

k can be di-
rectly constructed from Ck and the layers, without executing the whole selection
process.

6



Lemma 2 Let p be the requested page from layer Li, where 0 < i < k. If for
some j, with i ≤ j < k we have q ∈ Cj and C′

j−1 = Cj \ {q}, then we get

C′
j =

{

Cj+1 \ {q} if q ∈ Cj+1 ,

Cj+1 \min{Cj+1} otherwise .

Proof. We have:

C′
j = max

j
(L′

j ∪ C′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = Cj+1 \ {q} (case: q ∈ Cj+1)

C′
j = max

j
(L′

j ∪ C′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = max

j
(Cj+1) (case: q /∈ Cj+1)

In both cases, we first use the assumption C′
j−1 = Cj \{q} and the partition up-

date rule L′
j = Lj+1. In the case q ∈ Cj+1 we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) =

maxj (Lj+1 ∪ Cj \ {q}) ∪ {q}, which holds as q ∈ Cj implies q /∈ Lj+1. If
q /∈ Cj+1, we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) = maxj+1 (Lj+1 ∪Cj \ {q}). We
have q ∈ Cj , q /∈ Cj+1 and |Cj+1| = j + 1, which leads to C′

j = maxj (Cj+1) =
Cj+1 \min{Cj+1}. �

Theorem 1 Let p be the requested page. Given Ck, we obtain C′
k as follows:

1. p ∈ Ck: C′
k = Ck

2. p /∈ Ck and p ∈ L0: C′
k = Ck \min(Ck) ∪ {p}

3. p /∈ Ck and p ∈ Li, i > 0: C′
k = Ck \ min(Cj) ∪ {p}, and j ≥ i is the

smallest index with |Cj ∩ Ck| = j.

Before the proof, we note for the third case that the constraint |Cj ∩Ck| = j
means that all pages in Cj are also in Ck. While in general this constraint does
not hold for all j, it is satisfied for all layers containing revealed pages (and the
rightmost layer containing unrevealed pages) and thus such a j always exists.
Moreover, |Cj ∩Ck| = j is equivalent to |(L1 ∪ · · · ∪Lj) ∩Ck| = j, since Cj has
elements only in L1 ∪ · · · ∪ Lj and Cj ⊆ Ck.

Proof. First assume that p ∈ L0. In this case, by construction p is not in Ck.
The only layers that change are Lk−1 and Lk: L

′
k−1 = Lk−1∪Lk and L′

k = {p}.
Applying the definition of C′

k, the fact that Ck = maxk−1 (Ck−2 ∪ Lk−1) ∪ Lk,
and Lk is singleton, we get

C′
k = C′

k−1 ∪ {p} = max
k−1

(Ck−2 ∪ Lk−1 ∪ Lk) ∪ {p} = Ck \min (Ck) ∪ {p} .

Now we consider the case when p ∈ Li. We distinguish two cases: p ∈ Ck and
p /∈ Ck. If p ∈ Ck, we have by construction that p is in all sets Ci, . . . , Ck and
we get Ci = maxi (Ci−1 ∪ Li) = maxi−1 (Ci−1 ∪ Li \ {p}) ∪ {p}. Based on this
observation we show that C′

i−1 = Ci \ {p}. It obviously holds for i = 1 since C′
0

is empty. If i > 1 we get

C′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \ {p} .

7



Using C′
i−1 = Ci \ {p} and p ∈ Ci, applying Lemma 2 we get C′

i = Ci+1 \ {p}.
Furthermore, using that p is in all sets Ci+1, . . . , Ck, we apply Lemma 2 for all
these sets which leads to C′

k−1 = Ck \{p} and we obtain C′
k = C′

k−1∪{p} = Ck.
Now we assume that p /∈ Ck. This implies that p is a non-revealed page.

First we analyze the structure of C′
i−1 which will serve as starting point for

applying Lemma 2. If p ∈ Ci we argued before that C′
i−1 = Ci \{p}. Otherwise,

we show that C′
i−1 = Ci \min(Ci). It holds for i = 1 since C0 is always empty

and by Fact 1 we have |C1| = 1. If i > 1 we get:

C′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \min(Ci) .

Let j ≥ i be the smallest index such that |Cj∩Ck| = j. By construction, we have
Cj ⊆ Ck. Applying Lemma 2 for sets C′

i−1, . . . , C
′
j−1 we get C′

j−1 = Cj \ {s},
where s ∈ Cj and either s = p, s = minCj , or s is a page with minimal
priority from a set Cl, with i ≤ l < j. Note that page s is also in Ck by the
definition of Cj and thus s = p can be excluded since p is not in Ck. If s is
a page with minimal priority from some set Cl then all the other pages in Cl

are also in Cj and thus in Ck because all of them have higher priorities than
s. This leads to Cl ⊂ Ck which contradicts the minimality of j. Thus we have
s = minCj . Since the page s = min(Cj) is in all sets Cj , . . . , Ck by Lemma 2
we get C′

k−1 = Ck \min(Cj) and it follows that C′
k = Ck \min(Cj) ∪ {p}. �

2.3 Probability distribution of Ck

Theorem 2 Assume that non-revealed pages are assigned priorities such that
the order of the priorities is distributed uniformly at random. For any offset
function ω, the distribution of Ck over all possible cache configurations is the
same as the distribution of the cache configurations for the Equitable algo-
rithms.

Proof. Let u be the index of the last non-revealed layer, more precisely |Lu| > 1
and |Li| = 1 for all i > u. The set of non-revealed items is N(ω) = L1∪· · ·∪Lu

and the singletons Lu+1, . . . , Lk contain the revealed items R(ω).
The following selection process is used by both Equitable and Equitable2

to obtain the probability distribution of the cache M . Initially M contains all
k−u revealed items R(ω). Then u elements x1, . . . , xu are added to M , where xi

is chosen uniformly at random from the set of non-revealed items of ωx1,...,xi−1 ,
the offset function obtained from ω after requesting the sequence x1, . . . , xi−1.

We define an auxiliary selection C∗
k (ω) which is a priority based version of

Equitable’s random process and then prove for every fixed priority assignment
that Ck(ω) = C∗

k(ω) holds.
Assume that pages in N(ω) have pairwise distinct priorities, with a uni-

formly distributed priority order. Initialize C∗
k (ω) to R(ω) and add elements

x∗
1, . . . , x

∗
u to C∗

k(ω), where x∗
i is the page with maximal priority from the non-

revealed items of ωx∗

1
,...,x∗

i−1 . Obviously all pages from N(ω) have the same

8



probability to possess the maximal priority and thus x∗
1 and x1 have the same

distribution. Since x∗
1 is a revealed item in ωx∗

1 , the priority order of pages in
N(ωx∗

1 ) remains uniformly distributed. This implies inductively that C∗
k(ω) has

the same distribution as Equitable. Note that by the definition of C∗
k we have

C∗
k(ω) = C∗

k (ω
x∗

1 ) because x∗
1 becomes a revealed item in ωx∗

1 .
Now we prove for each fixed priority assignment that Ck(ω) = C∗

k (ω) by
induction on u. For u = 0 both C∗

k and Ck contain all k revealed items. For
u ≥ 1, let x∗

1 be the non-revealed page with the largest priority in ω. For
the auxiliary process, we have already shown that C∗

k(ω) = C∗
k(ω

x∗

1 ). Also, the
index u for ωx∗

1 is smaller by one than for ω, which by inductive hypothesis leads
to C∗

k(ω) = C∗
k (ω

x∗

1 ) = Ck(ω
x∗

1 ). It remains to prove that Ck(ω
x∗

1 ) = Ck(ω). By
the definition of the selection process for C1, . . . , Ck we have Ck(ω) = Cu(ω) ∪
R(ω). Page x∗

1 has the highest priority from N(ω) = L1 ∪ · · · ∪ Lu and thus it
is a member of Cu(ω) and hence also in Ck(ω). Applying the update rule from
Theorem 1 we get Ck(ω) = Ck(ω

x∗

1 ), and this concludes the proof. �

3 Algorithm OnlineMin

3.1 Algorithm

OnlineMin initially holds in its cache M the first k pairwise distinct pages.
Note that the timestamp of the last request for any page in Li is smaller than
the timestamp of the last request for any page in Li+1.

Page replacement. The algorithm maintains the invariant that M = Ck

after each request. To do so, it keeps track of the layer partition ω = (L0, . . . , Lk)
according to Definition 1 (including the forgiveness step of Equitable2), where
it suffices to store only the support layers (L1, . . . , Lk). The cache update is
performed according to Theorem 15. More precisely, if the requested page p is
in the cache, M remains unchanged. If a cache miss occurs and p is from L0 the
page with minimal priority from M is replaced by p. If p is from Li with i > 0,
and p /∈ M we first identify the set Cj in Theorem 1 satisfying |Cj∩M | = j. This
can be done as follows. Let p1, . . . , pk be the pages in M sorted in increasing
order by their layer index. We search the minimal index j ≥ i, such that the
condition that the layer index of pj is j, i.e. pj ∈ Lj , is satisfied (index j is
guaranteed to exist, since the condition holds for all revealed pages and the
rightmost unrevealed page). We evict the page with minimal priority from
p1, . . . , pj . The layers are updated after the cache update.

Priorities. To assign priorities, we develop a data structure which maintains a
dynamic random ordered set P of integers. We require at all times that the ranks
of numbers in P correspond to an (equally distributed) random permutation of

5Theorem 1 does not explicitly take into account the forgiveness step. According to Defi-
nition 1, if p ∈ L0 and forgiveness is applied we treat p as if it was requested in L1.

9



{1, . . . , |P |}. Under the assumption that the size of P is bounded by a number u,
we require |P | to support two operations: expand, which adds a new element
to P , and delete(x) which removes element x from P .

We use the universe U = {1, . . . , u} for numbers in P . We start with P = ∅.
Upon an expand operation we choose an element uniformly at random from
U \ P and insert it in P . Upon a delete operation, the element to delete is
simply removed from P . In particular, the expand operation corresponds to a
step in the Fisher-Yates shuffle algorithm (original method) [12]. They showed
that applying u expand operation results in a random permutation of U . In
Lemma 3 we show that the two operations can be implemented efficiently and
that the ranks of elements in P form a random permutation.

Lemma 3 The ranks of the elements in P represent a random permutation of
{1, . . . , |P |}. The data structure can be implemented in O(1) time per request
and uses O(u) space.

Proof. Let ex = (e1, . . . , ex) be a random variable describing the ranks in the
sequence after x consecutive expand operations. Since after u expand operation
the Fisher-Yates shuffle yields a random permutation. Thus, eu is a random
permutation of U and it follows that ex is a random permutation of {1, . . . , x}.
If ex describes the ranks in P , we get upon an expand operation the distribu-
tion ex+1 and upon a delete operation the distribution ex−1. We conclude that
ranks in P correspond to e|P | and thus a random permutation of {1, . . . , |P |}.

The data structure can be implemented using an array A of size u and a
list L of size |P |. We store the elements from P in the first |P | locations of A
and the rest of A contains all elements from U \ P . The element order is given
by the list L. We further assume direct access to the position of any element
i ∈ U in A and in L using additional O(u) space. Initially we set A[i] = i and
L = ∅. Upon an expand operation we choose a random index r in the range
[|P |+1, u] and append A[r] to L. To reflect this in A we switch the contents of
A[|P | + 1] and A[r]. The deletion of element x is similar, we first look up the
index ix of x in A and swap A[ix] and A[|P |]. We further delete x from L. �

By the forgiveness mechanism the support size is at all times O(k) and thus
priorities can be maintained using the data structure previously introduced.
When a page enters the support we assign it a priority using the expand oper-
ation, and when it leaves the support we use the delete operation. This takes
O(k) space and O(1) time per page request (at most one page is assigned a
new priority at each request) by setting u to the maximal support size which is
guaranteed by the forgiveness technique to be at most 3k.

Time and space complexity. Storing the layer partition together with the
page priorities needs O(k) space by applying the forgiveness mechanism of Eq-
uitable2 [6]. A naive implementation storing the layers in an array processes
a page request in O(k) time. In the remainder of the paper we will improve this

10



naive bound first to O(log k) worst case time per request using simple pointer-
based data structures and then to O(log k/ log log k) time per request using data
structures in the RAM model.

Competitive ratio. We showed in Theorem 2 that the probability distribu-
tion over the cache configurations for OnlineMin and Equitable2 are the
same. This holds also when using the forgiveness step, and thus the two algo-
rithms have the same expected cost. This leads to the result in Lemma 4.

Lemma 4 OnlineMin is Hk-competitive.

3.2 Algorithm Implementation

In this section we show that OnlineMin can be implemented using a sorted
list augmented with a series of specific operations. We will later focus only on
giving data structures supporting these operations.

Basic structure. In the following we represent each page in the support by
the timestamp of its last request. Consider a list L = (l1, . . . , lt), with t ≤
4k, where L has two types of elements: k layer delimiters and at most 3k
page elements. Furthermore, we distinguish two types of page elements: cache
elements which are the pages in the cache and support elements which are pages
in the support but not in the cache. We store in L the layers L1, . . . , Lk from
left to right, separated by k layer delimiters. For each layer Li we store its
layer delimiter, followed by the pages in Li. For each list element li, be it
page element or layer delimiter, we store a timestamp ti and a v-value vi with
vi ∈ {−1, 0, 1}; for page elements we also store the priority. For some element li,
if it is a layer delimiter for some layer Lj, we set vi = 1 and ti to the minimum
of all page timestamps in Lj . If li is a page element, then ti is set to the
timestamp corresponding to the last request of the page; we set vi = −1 for
cache elements and vi = 0 for support elements. Note that the layer delimiters
always have ti values matching the first page in their layer. As described before,
layer delimiters always precede page elements. An example is given in Figure 2.

Note that the v-values have the property that |Ck∩(L1∪· · ·∪Li)| = i iff the
prefix sum of the v-values for the last element in Li is zero. Furthermore, since
|Ck ∩ (L1 ∪ · · · ∪Li)| ≤ i the prefix sum cannot be negative. This property will
be used when dealing with a cache miss caused by a page from Li, with i > 0.

We show how to implement OnlineMin using the following operations on L:

• find-layer(lp). For some page lp, find its layer delimiter.

• search-page(lp). Check whether lp is a page in L.

• insert(lp), delete(lp). The item lp is inserted (or deleted) in L.

• find-min-prio(lp). Find the cache element lq ∈ (l1, . . . , lp) with mini-
mum priority.

11



1 0
2 2 4 5 5 8 8 10 11 13 13 15 18 18 21 21

1 1 1 1 1−1 −1 −1 −1 −1−10 0 0v

t

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

L1 L2 L3 L4 L5 L6

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Figure 2: Example for list L: representing pages by timestamps of last requests,
we have L1 = {2, 4}, L2 = {5}, L3 = {8, 10, 11}, L4 = {13, 15}, L5 = {18},
and L6 = {21}. Layer delimiters are emphasized and the memory content is
M = {4, 10, 11, 15, 18, 21}.

• find-zero(lp). Find the smallest j, with p ≤ j such that
∑j

l=1 vl = 0,
and return lj .

We note that the prefix sum cannot be negative, and thus for the find-zero
operation it suffices to find the first element to the right having the minimum
prefix sum. For this reason, we refer to find-zero also as find-pref-min.

We describe how to update the list L upon a request for some page p. On-

lineMin keeps in memory at all times the elements in L having the v-value
equal to -1.

If p /∈ M , we must identify a page to be evicted from M . To evict a page we
set its v-value to zero and to load a page we set its v-value to -1. We first find
the layer delimiter for p. We can have p ∈ Li with 0 < i ≤ k or p ∈ L0. If p ∈ Li,
the page to be evicted is the cache element in L1∪· · ·∪Lj having the minimum
priority, where j ≥ i is the minimal index satisfying |M ∩ (L1 ∪ · · · ∪ Lj)| = j.
This is done using find-zero(lLi

), where lLi
is the layer delimiter of Li, and

the page to be evicted is identified using find-min-prio applied to the value
returned by find-zero. If p ∈ L0 and forgiveness need not be applied, the page
having the smallest priority in M is to be evicted. We identify this page in L
using find-min-prio on the last element in L. If we must apply forgiveness,
we treat p as being a support page in L1.

After updating the cache, we perform in L the layer updates as follows. If
p ∈ Li with i > 0, the layers are updated as follows: Li−1 = Li−1 ∪ Li \ {p},
Lj = Lj+1 for all j ∈ {i, . . . , k − 1}, and Lk = {p}. We first delete the layer
delimiter for Li and the page element for p, which triggers not only the merge
of Li−1 and Li \ {p}, but also shifts all the remaining layers, i.e. Lj = Lj+1 for
all j ≥ i. If we deleted the layer delimiter for L1, we also delete all pages in L1

because in this case L1 is merged with L0. To create Lk = {p}, we simply insert
at the end a new layer delimiter followed by p, both items having as timestamp
the current timestamp.

If p ∈ L0, we first check whether we must apply the forgiveness step, and
if so we apply it by simulating the insertion of p in L1 and then requesting it,
as described in Definition 1. If forgiveness need not be applied, we update the
layers Lk−1 = Lk−1 ∪ Lk and Lk = {p} as follows. We first delete the layer
delimiter of Lk, which translates into merging Lk−1 and Lk. Then, we insert a
new layer delimiter having the timestamp of the current request, i.e. create Lk,
and insert p with the same timestamp.

12



We note that while the priority of each page takes O(log k) space, the times-
tamp for its last request takes O(log n) space. We reduce the space requirement
to O(log k) by simply resetting the timestamps for pages and layers in support
after O(k) operations, setting the new timestamps to 1, . . . , |S|, where |S| is the
support size. The new timestamps are assigned in a left-to-right manner, thus
ensuring that the relative order of the new timestamps reflect the old order.
Since by the forgiveness mechanism we have at all times |S| = O(k), it follows
that O(1) amortized time per page request is required. We further deamortize
this by resetting only c timestamps per page request, in a left-to-right manner,
where c is a constant with c > 2; it is necessary to have c > 2 because at each
request two elements (i.e. the rightmost set delimiter and page) receive new
timestamps according to the current (large) timestamp, and we need to ensure
that more pages receive updated (small) timestamps. At the end of the day,
in O(1) worst case time per request we ensure that the timestamps take also
O(log k) space.

3.3 Pointer-based structures

We implement all the operations previously introduced using two data struc-
tures: a set structure and a page-set structure. The set structure focuses only
on the find-layer operation, and the page-set data structure deals with the
remaining operations. While most operations can be implemented using stan-
dard data structures, i.e. balanced binary search trees, the key operation for the
page-set structure is find-zero. That is because we need to find in sublinear
time the first item to the right of an arbitrary given element having the prefix
sum zero in the presence of updates, and the item that is to be returned can be
as far as Θ(k) positions in L.

Set structure. The set structure is in charge only for the find-layer op-
eration. To do so, it must also support updating the layers. It is a classical
balanced binary search tree, e.g. an AVL tree, built on top of the layer delim-
iters in L having as keys the timestamps of the delimiters. Whenever a layer
delimiter is inserted or deleted from L, the set structure is updated accordingly.
Each operation takes O(log k) time in the worst case.

Page-set structure. The page-set structure contains all elements of L and
supports all the remaining operations required on L. We store the elements
of L, i.e. both page elements and layer delimiters, in the leaves of a regular
leaf oriented balanced binary search tree indexed by the timestamps. For some
node u, denote by T (u) the subtree rooted at u and by L(u) the leaves of T (u).
To deal with the priorities, at each node u we store the minimum priority
u.min p of the cache pages in L(u) and a pointer u.idx min p to the leaf having
this priority; if no cache pages exist, u.min p is set to infinity and u.idx min p
to null. For handling the v-values we store at each node u the sum u.sum of the
v-values stored in L(u) and the minimum prefix sum u.pref min of the v-values

13



pref min

idx pref min

sum

timestamp

min p

idx min p

Figure 3: The additional information stored at each node in the page-set struc-
ture.

restricted on the elements of L(u). More precisely, if L(u) = (p1, . . . , pm), we

have u.pref min = minml=1(
∑l

j=1 pj.v). Also, we store a pointer u.idx pref min
to the leaf having the prefix sum u.pref min . All the data stored at each node
is shown in Figure 3.

In the following fact it is shown that all values stored at each node can be
computed bottom up in O(1) time per node.

Fact 2 For each node u with children u.left and u.right, the following hold:

• u.min p = min{u.left .min p, u.right.min p} and u.idx min p is either
u.left .idx min p or u.right.idx min p depending on the origin of u.min p.

• u.pref min = min{u.left .pref min, u.left .sum + u.right.pref min} and
u.sum = u.left .sum + u.right.sum. We also have that u.idx pref min is
either u.left .idx pref min or u.right.idx pref min depending on the ori-
gin of the minimum prefix sum computed.

Updates. We discuss how to perform insertions and deletions in the page-
set structure. To insert an element, we create a leaf for the new element and
an internal node, and update the information stored at each internal node on
the path to the root as described in Fact 2. For the O(1) nodes per level in-
volved in rotations due to rebalancing we also recompute these values. Deleting
an element in the page-set structure is done analogously to insertion. We note
however that when requesting a page in L1 we must delete both the layer delim-
iter and all page elements in L1 from the data structure which leads to O(log k)
amortized time. We will show later how to improve this bound to O(log k) worst
case time for deletions as well.

Queries. We turn to queries supported by the page-set structure, which are
the queries required on L. The search-page operation is implemented using a
standard search in a leaf-oriented binary search tree.

14



1 0 1−1−1 1 10 0 11−1 −1 −10 −1
5 5 8 8 112 2 4 10 13 13 15 18 2118 21

0, −10, −11, 1 1, 0 −1, −1 0, 0 0, 0

0, 01, 0 0, 0 −1, −1

1, 0 −1, −1

0, 0

−1, −1

t

v

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸

L1 L2 L3 L4 L5 L6

Figure 4: The page-set data structure for L1 = {2, 4}, L2 = {5}, L3 =
{8, 10, 11}, L4 = {13, 15}, L5 = {18}, and L6 = {21}, and the memory image
M = {4, 10, 11, 15, 18, 21}. For each internal node u the (u.sum, u.pref min)
values are shown.

For find-min-prio we find the page element having the minimum priority
in l1, . . . , lp by traversing the path from lp to the root in the page-set structure.
For each node u on the path where lp is in the right-subtree, consider its left
child w. For all such nodes w identified and the leaf lp, take the minimum over
all w.min p, and return the corresponding w.idx min p index. Since it does a
bottom-up traversal, this operation takes O(log k) time in the worst case.

It remains to deal with the find-zero operation, where we are given some
leaf storing lp and must return the first leaf to the right which has the prefix
sum of the v-values zero. We do so by traversing the path from lp to the root.
For each visited node u let s denote the sum of v-values of all elements in L(u)
to the right of lp. Also, let ps be the best prefix sum found so far and s idx the
corresponding leaf. Initially s idx = lp and s = ps = lp.v. When advancing to
the parent from the right children no action is required. When advancing to the
parent node u from the left child we first check if s+u.right.pref min < ps and
if so we have found a better prefix sum, and update ps = s+ u.right.pref min
and s idx = u.right.idx pref min. Finally we update s = s+ u.right.sum. We
return the identified leaf s idx. This operation requires a bottom-up traversal
of the tree and thus takes O(log k) time in the worst case.

Worst-case bounds. The only operation taking ω(log k) time is page dele-
tion, more precisely when a page in L1 is requested all pages in L1 are moved
to L0 and thus should be removed from the support. Instead of deleting the set
delimiter and all the pages corresponding to L1, we delete only the set delimiter.
With the leading set delimiter removed, the list L no longer starts with a set
delimiter, but with at most O(k) elements having the v-value set to 0, since all
of these pages belong to L0 and thus by Definition 2 cannot be cache elements.
Also, these pages do not influence the prefix sums for the v-values. When we
process a page, we simply start by checking if the leftmost element in the tree

15



has a v-value of 0, and if so we delete it. Since each page request adds at most
one new element to the support, the space complexity is still O(k). This way
deletions can be done in O(log k) time in the worst case.

Each page request uses O(1) operations in both data structures. Theorem 3
summarizes the time and space complexities for this implementation of On-

lineMin.

Theorem 3 OnlineMin uses O(k) space and processes a request in O(log k)
time in the worst case.

3.4 RAM model structures

In this section we provide an alternative implementation for OnlineMin which
handles a page request in O(log k/ log log k) time. In particular,we describe how
the page-set structure operations can be implemented in O(log k/ log log k) time
in the RAM model and argue that this is the best possible for an approach using
the page-set interface defined in Section 3.2.

For the set structure, we use the data structure in [4] which supports up-
dates and predecessor queries in O(

√

log k/ log log k) time while using O(k)
space. A data structure which supports the search-page, insert, delete,
and find-min-prio operations in O(log k/ log log k) time can be found in [20,
Section 5], which adapts fusion tree ideas [13] to priority search trees [17].

In the following we modify the page-set structure previously introduced to
support both find-min-prio and find-zero operations in O(log k/ log log k)
time. In particular, for the find-min-prio operation we borrow ideas from [20].
Instead of the balanced binary search tree in Section 3.3 we use a B-tree [5],
where each node has degree at most ∆ = logε k for some 0 < ε ≤ 1/4.

Again, each node u stores u.min p, u.idx min p, u.sum and u.idx pref min.
Furthermore, to support the find-min-prio operation and to be able to update
u.min p, each node u stores additionally the following:

• A Q-heap u.Q over the w.min p priorities at the children of u.

• A word u.π storing for all the ∆ children the rank of u.child[i].min p
among u.child[1].min p, ..., u.child[∆].min p. Therefore the number of
bits required by u.π is ∆ log∆ = o(log k).

The Q-heap of Fredman and Willard [14, Theorem, page 550], supports in
O(1) time insertions, deletions, predecessor queries (in particular min-queries),
and rank queries (how many elements are smaller than a query element) on sets
having at most (log k)1/4 elements. The data structure requires word size at
least log k and time O(k) to preprocess some global tables.

The Q-heap u.Q allows us to update u.min p in O(1) time when the i’th
child w gets a new w.min p value, by deleting the old w.min p value from u.Q,
inserting the new w.min p into u.Q, and querying u.Q for the new minimum.
When updating u.min p we can also compute the new rank of w.min p among
the children of node u using u.Q, and update u.π using a precomputed table:

16



T [old π, i, new rank] = new π. Note that old π, i, and new rank in total
only require ∆ log∆ + log∆ + log∆ = o(log k) bits, i.e. the table needs ko(1)

precomputed entries. To perform find-min-priowe similarly traverse a leaf-to-
root path. At each node u where we now come from the i’th child w, we identify
the minimum of u.child[1].min p, . . . , u.child[i−1].min p by considering π only,
which again can be answered using a precomputed table T , where T [π, i] stores
the index of the child having the minimum min p value.

To support the find-zero operation we need to efficiently update and query
the prefix sum fields. To this end, we consider the updates in T (u) in phases,
where each phase consists of ∆ updates below u. At each node u we store the
following:

• A counter u.count in the range 0 . . .∆−1, counting the number of updates
below u since the start of the phase.

• A word u.τ storing an array of size ∆ with M [i] ∈ [0, . . . ,∆(∆ + 2)] for
all i; this means that u.τ can be stored in ∆(1 + 2 log∆) = o(log k) bits.

• Two arrays m and PS, each of size ∆.

• A word u.ς storing an array dm of size ∆ with dm[i] ∈ [−∆, . . . ,∆], i.e.
u.ς can be stored in ∆ log(2∆ + 1)=o(log k) bits.

At the beginning of a phase for some node u we reset the information stored
at u as follows. The arrays PS and m store the prefix sum and the minimum
prefix sum for the children of u respectively, that is PS[i] =

∑i−1
j=1 u.child[j].sum

and m[i] = u.child[i].pref min + PS[i]. Also, we set dm[i] = 0 for all i. After a
number of updates in a phase for T (u), dm[i] is the value to be added to PS[i]
to get the correct values for PS[i] and m[i].

We let M be an approximation of m which maintains at all times dur-
ing the phase the following invariant: for all i, if m[j] + dm[j] = min(m[i] +
dm[i], . . . ,m[∆] + dm[∆]) then we have that M [j] = min(M [i], . . . ,M [∆]).

At the beginning of a phase we construct M for decreasing index i, while
keeping track of the minimum m[min] where min > i. Initially min = u.degree
and M [u.degree] = ∆2. For i = u.degree − 1 downto 1, we compute M [i] as
follows: if m[i] ≥ m[min]+∆ then M [i] = M [min]+∆, and if m[i] ≤ m[min]−
∆, then M [i] = M [min] − ∆; otherwise, M [i] = M [min] + m[i] − m[min]. If
after computing M [i] we have M [i] < M [min] then we set min = i, see e.g.
Figure 5. The key idea is that any update can only change the pref min value
of a node by at most one, since the v-values are in {−1, 0, 1}. Therefore, if for
some i and j it holds that |u.child[i].pref min−u.child[j].pref min | > ∆ at the
beginning of the phase, then their relative order does not change during the ∆
updates in the phase.

To analyze the range of the M [i] values, we note that sinceM [j] is decreasing
during the construction any assigned value can be at most M [u.degree]+∆, i.e.
∆(∆ + 1). Similarly, each M [i] ≥ M [i + 1]−∆, i.e. all M [i] ≥ M [u.degree]−
(∆− 1)∆ = ∆2 −∆2 +∆ = ∆. Since each update below u during a phase can

17



������������������
������������������
������������������

������������������
������������������
������������������

������������������
������������������
������������������

������������������
������������������
������������������

������������������
������������������
������������������
������������������

1 2 3 ∆

m[i]

M [∆] := ∆2

i

∆

Figure 5: Illustration of the construction of M from m. Circles are the elements
of m. For each i the solid line/circle shows the minimum m to the right of i.
Elements that cannot become the answer during the next ∆ updates are replaced
by the elements pointed to by an arrow. The shaded area are the ranges of the
domain removed in the transformation from m to M .

change M [i] by at most ±1, it follows that during the ∆ operations in a phase
all M [i] values are within the range [0 . . .∆(∆ + 2)].

During an update where u.child[i].sum is incremented we increment all M [j]
and dm[j] for i < j ≤ u.degree; also, we increment M [i] and m[i] whenever
u.child[i].pref min is incremented. The case when u.child[i].sum is decremented
is treated similarly. The updating of M and dm can be done in O(1) time using
table lookup, i.e. T 1[old τ, i] = new τ and T 2[old ς, i] = new ς . Since M is re-
constructed only at the beginning of a phase, and M and dm can be constructed
in O(∆) time, it follows that the amortized cost to update M and dm for an
update below u is amortized O(1).

Updating the u.sum values bottom-up during updates is done by adding
(subtracting) the inserted (deleted) value along the leaf-to-root path. The child i
storing the new u.idx pref min = u.child[i].idx pref min can be extracted from
u.M (i.e. u.τ) using a table lookup, and v.pref min = m[i]+dm[i] (we compute
the index of the minimum child before actually knowing the exact value).

A query, i.e. find-zero, is performed bottom-up as in Section 3.3, where
we keep track of the minimum prefix sum s so far, except that when reaching
node u from child i, we need to find the child j with minimum prefix sum
among children i + 1, . . . , degree(u). This can be extracted from u.M using
table lookup in O(1) time. The minimum prefix sum for u.child[j] is PS[j] =
u.m[j] + u.dm[j], which is compared to the prefix sum from u.child[i] which is
PS[i] = s+u.PS[i]+v.dm[i]; s becomes the minimum of PS[i] and PS[j]. If this
minimum is PS[j], then idx pref min is updated to u.child[j].idx pref min.

Inserting a new leaf into the tree might cause a node to get more than ∆

18



children, in which case we split the affected node into two nodes of degree at
most ∆/2+ 1 each. Whenever a node is split, gets a new child, or loses a child,
we recompute all the information at the node in O(∆) time. This way the total
number of node splits is bounded by O(#insertions/∆) and it follows that the
total cause for splitting and inserting/deleting leaves is O(#insertions ·∆), i.e.
amortizedO(∆) per update. To avoid the height of the tree to exceed O(log∆ k),
we globally rebuild the tree and all the associated information from scratch in
O(k) time whenever half of the leaves inserted into the tree have been deleted.

To achieve worst case bounds we use standard deamortization techniques.
We perform the node splitting and the computation of the appropriate values at
the beginning of each phase incrementally. We simply save the state of the node
and at each update we perform O(1) computations such that after ∆ updates the
updated values in the given node are computed. Similarly, the global rebuilding
can be done incrementally as well, which yields O(1) at each level of the tree for
all operations. Since the tree has height O(log∆ k) where ∆ = logε k, it follows
that all operations can be implemented in O(log k/ log log k) worst case time.

The following results stems from the fact that each page request uses a
constant number of operations on the previously introduced data structure.

Theorem 4 A page request can be done in O(log k/ log log k) time while using
O(k) space.

Lower bounds The following cell-probe (RAM) lower bounds (using words
of log k bits) state that for the page-set structure we cannot achieve better
than Ω(log k/ log log k) query time with polylogarithmic deletion bounds. Ac-
cording to [3, Proposition 2] (note after proposition about decremental priority
searching) any data structure supporting delete and find-min-prio requires
Ω(log k/ log log k) time for polylogarithmic deletion time. We note that the
given lower bound applies to the page-set structure in particular and not to
the paging problem in general, not even to the approach taken by OnlineMin.
Nonetheless, they show that to process a page request in o(log k/ log log k) time
any implementation must exploit some particular characteristics of OnlineMin.

Acknowledgements

We would like to thank previous anonymous reviewers for very insightful com-
ments and suggestions. Also, we would like to thank Annamária Kovács for
useful advice on improving the presentation of the paper.

References

[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of random-
ized paging algorithms. Theoretical Computer Science, 234(1-2):203–218,
2000.

19



[2] S. Albers. Online algorithms: a survey. Mathematical Programming, 97(1–
2):3–26, 2003.

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In
Proc. 39th Annual Symposium on Foundations of Computer Science, pages
534–544. IEEE Computer Society, 1998.

[4] A. Andersson and M. Thorup. Dynamic ordered sets with exponential
search trees. Journal of the ACM, 54(3), 2007.

[5] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189, 1972.

[6] W. W. Bein, L. L. Larmore, J. Noga, and R. Reischuk. Knowledge state
algorithms. Algorithmica, 60(3):653–678, 2011.

[7] L. A. Belady. A study of replacement algorithms for virtual-storage com-
puter. IBM Systems Journal, 5(2):78–101, 1966.

[8] A. Borodin and R. El-Yaniv. Online computation and competitive anlysis.
Cambridge University Press, 1998.

[9] M. Chrobak, E. Koutsoupias, and J. Noga. More on randomized on-line
algorithms for caching. Theoretical Computer Science, 290(3):1997–2008,
2003.

[10] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.
Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–
699, 1991.

[11] A. Fiat and G. J. Woeginger, editors. Online Algorithms, The State of the
Art (the book grow out of a Dagstuhl Seminar, June 1996), volume 1442 of
Lecture Notes in Computer Science. Springer, 1998.

[12] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural, and
medical research (3rd edition). Oliver and Boyd, 1948.

[13] M. L. Fredman and D. E. Willard. Surpassing the information theo-
retic bound with fusion trees. Journal of Computer and System Sciences,
47(3):424–436, 1993.

[14] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for min-
imum spanning trees and shortest paths. Journal of Computer and System
Sciences, 48(3):533–551, 1994.

[15] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive
snoopy caching. Algorithmica, 3:77–119, 1988.

[16] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis. In
Proc. 35th Symposium on Foundations of Computer Science, pages 394–
400. IEEE Computer Society, 1994.

20



[17] E. M. McCreight. Priority search trees. SIAM Journal on Computing,
14(2):257–276, 1985.

[18] L. A. McGeoch and D. D. Sleator. A strongly competitive randomized
paging algorithm. Algorithmica, 6(6):816–825, 1991.

[19] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

[20] D. E. Willard. Examining computational geometry, van Emde Boas trees,
and hashing from the perspective of the fusion tree. SIAM Journal of
Computing, 29(3):1030–1049, 2000.

21


