
Introduction Query Semantics Implementations
Today, increased on-chip parallelism is a key means
of improving processor performance. Moving-object
workloads with long-running queries and massive
numbers of updates render it particularly challenging
to avoid inter-thread interference and thus achieve
scalability.

Traditional database serializability requires
extensive locking and implements timeslice
semantics, meaning that a query reports precisely
the objects in its range at a specific time instance.
Consequently, operations are often blocked, leaving
highly parallel CPUs underutilized, as processing
cores remain idle.

Timeslice: tx < ts. All objects that are valid at a specific time instance (tx) just before the query start
time (ts). A conventional serializable execution ensures such semantics.

Stale-timeslice: tx << ts. The time instance tx is not guaranteed to be fresh. Snapshot-based
processing provides such semantics [3].

Freshness: tx < ts or ts < tx < te. As timeslice, but some objects can be fresher, i.e., updated during
query processing from ts to te. E.g., the green positions are reported (updates occur in [t1, t2]):

Key observation: te − ts < To, where To is the time between two consecutive updates of an object.

Query staleness: the ratio of update s ignored by the query to the total number of objects. An 
update is ignored if it has a lower timestamp than a query, but is not taken into account by the 
query.

 Services queries via a uniform and static  grid
 Services updates via a secondary index 

(bottom-up approach [1])
 Relies on hardware-assisted atomic

operations for concurrency control
 Utilizes SIMD registers for atomic object data 

reads and writes

Classification of considered approaches
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Results from a micro-benchmark that measures
CPU Cycles per 128-bit read/write using different
synchronization methods.

 Includes four diverse multi-core platforms
 Studies eight grid-based index variants
 Exercises the indexes under massive workloads

containing tens of millions of moving vehicles
simulated in a road network of Germany

 All figures show results obtained on a 16-core Intel E5-
2670 machine with 32 hardware threads in total
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Varying U/Q Ratio
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