
Introduction Query Semantics Implementations
Today, increased on-chip parallelism is a key means
of improving processor performance. Moving-object
workloads with long-running queries and massive
numbers of updates render it particularly challenging
to avoid inter-thread interference and thus achieve
scalability.

Traditional database serializability requires
extensive locking and implements timeslice
semantics, meaning that a query reports precisely
the objects in its range at a specific time instance.
Consequently, operations are often blocked, leaving
highly parallel CPUs underutilized, as processing
cores remain idle.

Timeslice: tx < ts. All objects that are valid at a specific time instance (tx) just before the query start
time (ts). A conventional serializable execution ensures such semantics.

Stale-timeslice: tx << ts. The time instance tx is not guaranteed to be fresh. Snapshot-based
processing provides such semantics [3].

Freshness: tx < ts or ts < tx < te. As timeslice, but some objects can be fresher, i.e., updated during
query processing from ts to te. E.g., the green positions are reported (updates occur in [t1, t2]):

Key observation: te − ts < To, where To is the time between two consecutive updates of an object.

Query staleness: the ratio of update s ignored by the query to the total number of objects. An
update is ignored if it has a lower timestamp than a query, but is not taken into account by the
query.

 Services queries via a uniform and static grid
 Services updates via a secondary index

(bottom-up approach [1])
 Relies on hardware-assisted atomic

operations for concurrency control
 Utilizes SIMD registers for atomic object data

reads and writes

Classification of considered approaches

Empirical Study

References
[1] M. L. Lee et al. Supporting frequent updates in

R-trees: a bottom-up approach. VLDB 2003.
[2] D. Šidlauskas et al. Trees or grids? Indexing

moving objects in main memory. GIS 2009.
[3] D. Šidlauskas et al. Thread-level parallel

indexing of update intensive moving-object
workloads. SSTD 2011.

[4] D. Šidlauskas et al. Parallel main-memory
indexing for moving-object query and update
workloads. SIGMOD 2012.

Varying the query staleness in TP-Grid

Processing of Extreme Moving-Object Update and Query Workloads in Main Memory

Christian S. Jensen
Aarhus University

Darius Šidlauskas
Aarhus University

Simonas Šaltenis
Aalborg University

Results from a micro-benchmark that measures
CPU Cycles per 128-bit read/write using different
synchronization methods.

 Includes four diverse multi-core platforms
 Studies eight grid-based index variants
 Exercises the indexes under massive workloads

containing tens of millions of moving vehicles
simulated in a road network of Germany

 All figures show results obtained on a 16-core Intel E5-
2670 machine with 32 hardware threads in total

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

1234681012141620242832
 u−Grid Serial TwinGrid TP−Grid PGridsimd PGridolfit SerialPGridsimd SerialPGridolfit

250 500 1000 2000 4000 8000
0

5

10

15

20

25

Grid cell size, m

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

best throughput

Optimal Grid Cell Size

1 2 3 4 6 8 10 12 14 16 20 24 28 32
0

5

10

15

20

25

Threads

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

Multi-threaded Scalability

10 20 40 80 160
4

8

16

28

Time between updates, sec.

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

Varying T0

0.25 1 4 16 64

2

4

8

16

32

48

Range query size, km2

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

Varying RQ Size

5 10 20 40 80
4

8

16

32

Objects, × 106

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

Varying #objects

250 .5K 1K 2K 4K 8K 16K
4

8

16

32

64

Update/query ratio, x/1

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

Varying U/Q Ratio

Varying the query staleness in
TwinGrid

Main Data Structures

Two-phase switching in TP-Gridu-Grid [2]
Serial
SerialPGrid

PGrid [4]

TwinGrid [3]
TP-Grid ----

Semantics

Q
ue

ry

R
es

ul
ts

Up-to-
date

Stale/
delayed

Timeslice Freshness

1 2 4 8 16 32 64
0

2

4

6

8

10

12

Query staleness, % (log scale)

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

processing
snapshotting

0.5 1 2 4 8 16 32 64
0

2

4

6

8

10

12

Query staleness, % (log scale)

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

update phase
query phase

1

2

4

8

16

32
49
64

128

256

#s
w

it
ch

es
/s

ec
 (

lo
g

 s
ca

le
)

phase switches

